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Purpose  

 This document provides technical guidance and procedures for identifying and delineating 

eelgrass (Zostera spp.) that may be subject to regulatory jurisdiction under Section 404 of the 

Clean Water Act (33 U.S.C.1344) or Section 10 of the Rivers and Harbors Act (33 U.S.C.403).   

It has been developed to assist applicants and/or their consultants within the geographic area 

covered by the Seattle District U. S. Army Corps of Engineers when a characterization of 

eelgrass is requested to evaluate proposed work within marine waters.  Note: This document was 

developed for eelgrass; however, we encourage the user to document other marine species, such 

as kelp, as that information may be required for the overall characterization of the project site. 

Also, although this guidance is specifically for eelgrass, it may be applicable for other types of 

seagrasses.  

 

Qualifications    

Eelgrass mapping and monitoring surveys should be performed by someone who has 

demonstrated the ability to identify eelgrass species present within the project area, and conduct 

ecological surveys.  

Survey Timing  
Sampling shall be conducted during periods when above-ground material is present in sufficient 

quantities to be readily observable: June 1 through October 1.  If multi-year surveys are planned, 

they should all be done at the same time of year to avoid seasonal biases in the results.  Survey 

results will be valid for a period of 1 year.  If it has been more than 1 year but less than 3 years 

since the last survey, then at a minimum, the mapped boundaries of the eelgrass and macroalgae 

beds must be re-verified to ensure that they have not changed.  If more than 3 years have elapsed 

since the last eelgrass/macroalgae mapping survey, a new complete mapping survey shall be 

conducted.  
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Overview of Eelgrass Survey Types: Tier 1 and Tier 2   

Depending on the type and scale of the proposed project, either a Tier 1 level eelgrass survey or a 

Tier 2 survey is recommended. The requirements for Tier 1 and Tier 2 surveys are described in 

detail in subsequent sections.    

Tier 1: survey is considered a reconnaissance level survey that captures basic information such 

as presence/absence and eelgrass bed spatial distribution.  A Tier-1 survey is generally applicable 

when the project will avoid work in eelgrass and therefore only requires identification of the 

eelgrass boundaries.  

Tier 2: survey is intended to be a more rigorous quantitative characterization for work with the 

potential for direct impacts to eelgrass resources and is generally applicable to projects such as 

dredging, commercial-scale marinas, large aquaculture projects, cable and pipeline installation 

projects involving trenching and filling, and construction of small-scale ocean energy structures 

(e.g., tidal or wave energy, wind energy).  For large projects, it may be more efficient to use a 

combination of Tier 1 and Tier 2 surveys.  Tier 1 reconnaissance surveys conducted over large 

areas can be used to target specific areas where more detailed eelgrass resource maps may be 

needed.   

  

Defining and Delineating Eelgrass Bed Boundaries  

The uppermost boundaries of seagrass growth are controlled by desiccation and temperature 

stress (Boese et al. 2005), but can also be locally influenced by activities such as shellfish harvest 

and reflective energy from shoreline armoring (Short and Wyllie-Echeverria 1996). The lower 

boundary, or maximum depth of seagrass growth can be directly related to the submarine light 

environment (Duarte 1991). Within these limits, seagrass bed patterns range from continuous or 

semi-continuous over hundreds of meters to patchy distributions ranging from a meter to tens of 

meters in the longest dimension (Fonseca and Bell 1998).  

Potential Z. marina habitat in the Pacific Northwest may be classified as either fringe or flats 

based on its geomorphic setting (Berry et al. 2003). Fringe Z. marina habitats are areas with 

relatively linear shorelines where potential Z. marina habitat is limited to a narrow band by 

http://www.sciencedirect.com/science/article/pii/030437709190081F


4 

 

bathymetry.  Identification of eelgrass bed boundaries in fringe sites is relatively straightforward.  

Flats Z. marina sites are shallow embayments with extensive broad shallows that appear to have 

little slope within the vegetated zones.  Delineation of eelgrass beds in flats sites can be more 

challenging because they are often highly fragmented and very dynamic on both spatial and 

temporal scales. Bed patchiness increases with increasing wave exposure and tidal current speed.  

For more information on the influence of landscape setting and physical exposure on eelgrass 

bed configuration, see Appendix A. 

One of the two methods described below shall be used to define eelgrass habitat and delineate 

eelgrass bed boundaries.  Although the two methods are slightly different, in practice the results 

of eelgrass delineations done with either method would be expected to be similar1.  

If the eelgrass bed is composed of many individual patches, and the distance between adjacent 

patches is 5m or less, then it is not necessary to delineate each individual patch.  The outer 

perimeters of the patchy areas may be delineated as described below and noted as patchy on the 

site description. 

Eelgrass Delineation Method A:  An eelgrass bed is defined as a minimum of 3 shoots 

per 0.25 m2 (1/4 square meter) within 1 meter of any adjacent shoots.  To identify the bed 

boundary, proceed in a linear direction and find the last shoot that is within 1 meter of an 

adjacent shoot along that transect.  The bed boundary (edge) is defined as the point 0.5 

meter past that last shoot, in recognition of the average length of the roots and rhizomes 

extending from an individual shoot (Washington Dept. of Natural Resources (WADNR) 

2012).   

Eelgrass Delineation Method B:  The California Eelgrass Mitigation Policy and 

Implementing Guidelines (NOAA Fisheries 2014) identify eelgrass bed edge as follows: 

any eelgrass within one square meter quadrat and within 1 meter of another shoot.    

                                                 
1 In cases where the delineation is part of the support for a proposed permit, is required to meet programmatic 

Endangered Species Act consultations, or as proposed mitigation, the appropriate buffer should be included in 

maps/drawings. Once the bed edge is identified using either Method A or B, delineate an un-vegetated perimeter 

zone around the edge of each bed or patch.  Un-vegetated areas within this perimeter zone may have eelgrass shoots 

a distance greater than 1 meter from another shoot, and may be internal as well as external to areas of vegetated 

cover.  See Figure 1 in Appendix A for example.  The required width of the un-vegetated perimeter may vary by 

project type.  Applicants should also be aware of local and state requirements for eelgrass surveys, as these may 

differ from the guidance presented here.  In that case, identify the larger perimeter zone. 
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Tier 1 Surveys  

A Tier 1 survey is considered a reconnaissance level survey for those projects that propose to 

avoid work in eelgrass.  A Tier 1 survey captures basic information such as presence/absence, 

eelgrass bed spatial distribution, including maximum and minimum depth distribution, 

approximation of the total area of the eelgrass bed, and a qualitative assessment of eelgrass 

cover.   Appendix B provides a sample data sheet and eelgrass habitat map suitable for Tier 1 

surveys. 

Tier 1 Data Collection Methods.    

Intertidal sites shall be sampled by walking or wading during low tides.  Divers will usually be 

needed to collect information at subtidal sites.   

For very large sites, alternative remote sensing methods such as underwater photography, 

hydroacoustic surveys or aerial photography may be used to determine eelgrass bed locations.  

For more information on these methods, see the section on Eelgrass Survey and Mapping 

Methods.  However, if any of these remote sensing methods is used to prepare maps of eelgrass 

distribution, additional data must also be collected (and submitted) using walking, wading or 

diver surveys to verify the remotely sensed data.    

Tier 1 Transect Layout.    

For linear projects (e. g. pipelines), establish a single transect aligned along the centerline of the 

project footprint.  Otherwise, establish a series of sample transects perpendicular to shore spaced 

between 5 to 25 feet apart. For projects that are not adjacent to the shoreline, orientate transects 

relative to another physical reference, such as a channel boundary or depth gradient.  Transects 

must also be referenced to a permanent feature at the site to ensure repeatability.   

At sites where the eelgrass beds are smaller, with patchy or discontinuous distributions, sample 

transects should be closely spaced (5 to10 feet).  For sites containing relatively contiguous 

eelgrass beds, or for projects involving very large areas, transects spaced at intervals of 15 to 25 

feet apart are appropriate.  At least one transect should be aligned along the proposed centerline 

of the project.  Locate additional transects at distances of 10 and 25 feet from the outer edges of 

the proposed project footprint.  Transects should extend at least 25 feet waterward of the project 

footprint, or to the outer margin of the eelgrass bed.    
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Along each transect, determine the location of the boundaries of the eelgrass beds or patches 

according to the instructions for either Method A or B for delineating the boundaries of eelgrass 

habitats.  Applicants are also encouraged to note the location of any macroalgae, especially kelp 

species, if present.  

Tier 1 Field Data Collection and Reporting.  

The following data shall be recorded in the field and included in the survey report:   

1. Site name, sample date and time of day (start and finish);   

2. The names of the person(s) conducting the survey; and whether Method A or 

Method B was used to delineate the eelgrass bed(s).  

  

For each survey transect, record the following information:  

3. Record the GPS coordinates, elevation (relative to mean lower low water  

(MLLW)), and distance along the transect of the upper and lower boundaries of the 

eelgrass and macroalgae beds or patches, by species.  NOTE: If dwarf eelgrass 

(Zostera japonica) is present, there may be multiple eelgrass zones (e.g. an upper 

intertidal zone of pure Z. japonica, a mid-intertidal zone of Z. japonica mixed with 

Z. marina, and a pure Z. marina zone).  In this case, record the GPS coordinates, 

elevation (relative to MLLW) and distance along transect for the upper and lower 

boundaries of each zone along each survey transect In mixed beds, it can 

sometimes be difficult to distinguish between the two Zostera species.  For further 

information on identification of Z. marina and Z. japonica, see Appendix C.    

4. Using either a 0.25 square meter (Method A) or 1.0 square meter quadrat (Method 

B) , record estimates of eelgrass and macroalgae percent cover, by species, along 

each transect at intervals equal to the transect spacing, forming a sample grid 

pattern.  For example, if the transects are spaced 10 feet apart, record species’ 

percent cover in sampling stations at 10-foot intervals along the transects.  In 

addition, record species’ percent coverage at both the beginning and end of each 

transect.  Categorical estimates of percent cover may be used [e.g, absent or 0%; 1-

10% cover; 11-25% cover; 26-50% cover; and > (greater than) 50% cover].     
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5. Applicants are also encouraged to record notable biological observations (e.g., the 

presence of flowering eelgrass shoots, shellfish, crabs, fish, marine mammals, 

shorebirds or waterfowl, sediment type (e.g., silt, mud, sand, shell, etc).   

Tier 1 Preparation of Habitat Maps.  

Prepare an eelgrass and macroalgae habitat distribution map using the GPS coordinates taken 

from the survey data.  The map shall include the following information:   

a) Site name, sample date and times, names of the persons collecting the data;   

b) Boundaries of the project area and site plan; and north arrow;  

c) Accurate bathymetric contours (local vertical datum of MLLW) at intervals of not 

more than 1 foot;  

d) Scale and measures of distance along the axis of the transects;   

e) Locations of all sample transects and sampling stations;  

f) Locations of upper and lower boundaries of Z. marina and Z. japonica (if present) 

eelgrass beds, and, if buffer proposed, an unvegetated perimeter around bed edges;  

g) Estimated percent cover of eelgrass and macroalgae [e.g, absent or 0%; 1-10% cover; 

11-25% cover; 26-50% cover; and > 50% cover] at each quadrat sample point.  

Tier 1 Reporting Requirements.  

In addition to the maps of eelgrass distribution within the project area described above, the report 

shall also include the following:  

1) Calculations of total project acreage;   

2) Calculations of eelgrass acreage (total area of all eelgrass beds and patches as defined 

previously; by species);  

3) Calculations of eelgrass habitat acreage, by species  

For contiguous beds, eelgrass habitat acreage is the area of all contiguous beds, plus, 

if buffer proposed, the area of the un-vegetated perimeter around the bed edge.    

For patchy beds, eelgrass habitat area includes the cumulative area of the individual 

patches, including any un-vegetated areas between patches that are less than 16 feet 

(5 meters) apart, plus, if buffer proposed, the area of the un-vegetated perimeter 
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around the bed edge.  Note that un-vegetated areas may include areas with single 

eelgrass shoots that are more than 1 meter apart.  

4) Data sheets showing the information collected on each transect (see Example in 

Appendix A).    

5) (Recommended) Notable biological observations (the presence of flowering eelgrass 

shoots, shellfish, crabs, fish, marine mammals, shorebirds or waterfowl, etc.  

Tier 2 Surveys   

A Tier 2 survey is intended to be a more rigorous quantitative characterization for work with the 

potential for direct impacts to eelgrass resources and is generally applicable to larger-scale 

projects, such as dredging, commercial-scale marinas, large aquaculture projects, cable and 

pipeline installation projects involving trenching and filling, and construction of small-scale 

ocean energy structures (e.g., tidal or wave energy, wind energy).   

Tier 2 surveys should be designed to be replicated, because multi-year surveys may be required 

to establish baseline conditions in some sites, and post-construction surveys may be required to 

determine the extent of potential eelgrass impact or be used to monitor the success of eelgrass 

compensatory mitigation projects.   

It is important to note that the spatial scale of large coastal development projects can have 

potentially larger impacts on eelgrass and may require more extensive site analysis and 

evaluation than is presented in this guidance.  Likewise, compensatory mitigation projects 

involving eelgrass may require environmental assessments beyond the scope of this guidance.  

Applicants should also be aware of local and state requirements for eelgrass surveys, as these 

may differ from the guidance presented here.  

Tier 2 Transect Layout.    

For linear projects (e. g. pipelines), establish a single transect aligned along the centerline of the 

project footprint.  Otherwise, establish a series of sample transects perpendicular to shore at the 

appropriate spacing, typically 5 to 16 feet (2 to 5 meters) apart.  Transect spacing for Tier 2 

surveys will generally be closer than for Tier 1 surveys.  For projects not adjacent to the 

shoreline, orientate transects relative to another physical reference, such as a channel boundary 
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or depth gradient.  Transects must also be referenced to a permanent feature at the site to ensure 

repeatability.  If multi-year surveys are being conducted to detect changes in eelgrass condition 

over time, or assess potential impacts, the locations of sample transects shall be fixed, not 

random, and should be permanently marked so that they can be sampled repeatedly over time.    

Tier 2 surveys, maps and reports shall include all of the information identified above 

for a Tier 1 survey.   

 In addition, Tier 2 surveys shall include quantitative quadrat sampling for eelgrass density as 

described below.  Along each transect line, place a 0.25-m² (1/4 square meter) or 1.0 m2 (1 

square meter) quadrat sampling frame at intervals equal to the transect spacing, forming a sample 

grid pattern.  For example, if the transects are spaced 5 feet apart, place the quadrat sampling 

frame at 5-foot intervals along the transect.  Placement of the quadrat relative to the transect line 

at each sampling station may be done randomly (e.g., coin toss) or by consistently placing the 

quadrat on one side or the other for all sampling stations. Quantitative sampling of eelgrass shall 

be limited to areas no deeper than the deepest natural eelgrass patch found in the vicinity of the 

project.   

For each quadrat sample location, native eelgrass (Z. marina) shoot density (number of native 

eelgrass shoots present in the quadrat sampling frame) shall be recorded.  If 0.25 m2 sample 

quadrats are used, then raw data values of eelgrass shoot density shall be converted to numbers 

of shoots per m2 (square meter). For non-native eelgrass (Z. japonica) or macroalgae, categorical 

estimates of percent cover [e.g, absent or 0%; 1-10% cover; 11-25% cover; 26-50% cover; and 

greater than 50% cover]  may be recorded in lieu of shoot density for each quadrat sample.  A 

minimum of thirty samples per site will be taken within the eelgrass or macroalgae zone.  
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Eelgrass Survey and Mapping Methods  
  

Method 1: Walking or Wading (Tier 1 and 2)  

This method should be used if the site is intertidal.  The shallow, or inshore, edge of the bed is 

usually clearly visible at low tide.  At each site, establish a series of transect lines according to 

either Tier 1 or Tier 2 survey methods.  An observer with a handheld Geographic Positioning 

System GPS unit shall walk or wade along each transect and record the locations of the upper 

and lower boundaries of eelgrass beds or zones, using either Method A or B for delineating the 

boundaries of the eelgrass beds.  If the water is clear, the deep or offshore edge of the eelgrass 

bed may be visible with the naked eye from the boat or with the use of a bathyscope (underwater 

viewing box).  GPS coordinates and water depth can be taken according to either Tier 1 or Tier 2 

survey methods to track the deep edge of the bed.  

  

 Method 2: Snorkelers or Divers (Tier 1 and 2)  

If the water, even at low tide, does not allow observation of the bottom, then snorkelers or divers 

shall be used to identify the boundaries of any eelgrass present onsite.  Safety issues such as the 

potential for strong tidal currents in some areas should also be considered.  

For Tier 1 surveys, a series of buoys can be used to mark the upper and lower edges of 

the bed to identify their locations.  The scope, or length, of the line on the buoy needs to be 

minimized to the greatest extent possible.  Having a large amount of scope on the line can lead to 

significant under/overestimate of actual eelgrass extent.  Once the boundaries are marked with 

buoys, then a vessel can be maneuvered from buoy to buoy recording GPS coordinates.    

Tier 2 surveys will require a series of quantitative samples along transects using 0.25 m2 

or 1.0 m2 quadrats (see Tier 2 methods above).    

  

Method 3: Underwater Photography (Tier 1 only)  

Underwater videography can be particularly useful for detecting and mapping the presence of 

eelgrass over large study areas that may be difficult to sample using more intensive methods 

such as diver transects.  At each site, establish a series of transect lines running perpendicular to 

the shoreline that begin just outside the boundaries of the proposed project area, making sure that 
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the transects cover the entire project area.  Record underwater imagery along each transect and 

identify the locations of all visible eelgrass beds or patches.  However, it may not always be 

possible to distinguish among Pacific Northwest seagrasses (e.g. Z. marina, Z. japonica and 

Phyllospadix spp.) (Berry et al. 2003).  Where multiple seagrass species occur, verification shall 

be performed using Methods 1 or 2 above to verify species identification.    

  

Method 4: Hydroacoustic Mapping (Tier 1 only)  

If the site is very large, hydroacoustic surveys may be considered as an alternative to the methods 

outlined above for a Tier 1 survey.  Because detection and mapping of eelgrass using 

hydroacoustic equipment is not limited by water clarity, this method is particularly suitable for 

turbid water conditions.  Depending on the heterogeneity of the eelgrass beds, the size of the 

area, and the desired degree of survey resolution, transect spacing may vary from as little as 25 ft 

to more than 100 ft.  However, ground-truthing using wading, divers, or underwater photography 

must be performed to verify the hydroacoustic mapping classifications.  

Limitations:  Hydroacoustic surveys are not suitable for very shallow waters (less than 0.75 m) 

where access by small boats is limited.  The hydroacoustic survey system is not currently capable 

of reliably distinguishing between underwater vascular plants (e.g. eelgrass) and macroalgae 

(e.g., kelp).  In tidal waters, the information on canopy height is unreliable unless the surveys 

were conducted at slack tide.    

  

Method 5: Aerial Photography (Tier 1 only)  

If the site is extremely large, aerial photography obtained from the state or other sources may be 

used to provide background information on the likely presence or absence of eelgrass at a 

particular site.  However, it shall not be used as the only source of information. It is not possible 

to reliably distinguish between eelgrass and macroalgae, or between different species of eelgrass 

or other seagrasses, using aerial imagery.  Aerial photography is also likely to underestimate 

eelgrass coverage because eelgrass occurring in deeper waters can appear dark and may not be 

detected.  Ground-truthing using any of Methods 1through 3 above must be performed to verify 

the mapping classifications determined from aerial photography.  
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APPENDIX A : THE INFLUENCE OF LANDSCAPE SETTING ON EELGRASS 

BED CONFIGURATION 
 

Shallow eelgrass populations form characteristic landscapes with a configuration that is highly 

related to the level of physical exposure. Seagrass bed patterns range from continuous or semi-

continuous over hundred of meters to patchy distributions ranging from a meter to tens of meters 

in the longest dimension (Fonseca and Bell 1998). Bed fragmentation generally increases with 

increasing wave exposure and tidal current speed (Fonseca and Bell 1998).  Therefore, the 

geomorphic setting and hydrodynamics of the nearshore zone have a strong influence on 

seagrass distribution and bed structure.  

Potential Z. marina habitat in the Pacific Northwest may be classified as either fringe (Figure 1) 

or flats (Figure 2) based on its geomorphic setting (Berry et al. 2003). These classifications are 

analogous to the tidal fringe and flats classes of wetlands in the Hydrogeomorphic (HGM) 

wetland classification system (Smith et al. 1995).   

 

2.1  Fringe Eelgrass Habitats 

Fringe Z. marina habitats are areas with relatively linear shorelines where potential Z. marina 

habitat is limited to a narrow band by bathymetry.  Fringe eelgrass beds may be contiguous or 

nearly contiguous over long sections of linear shorelines (Figure A1).  The fringe category is 

further classified into narrow fringe and wide fringe based on a 305 m (1000 ft) threshold width 

separating ordinary high water and the –20 ft depth contour (Berry et al. 2003) (Figure A1).  
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Figure A1.  Illustration of fringe geomorphic classifications of eelgrass sites (modified from 
Berry et al. 2003). 

 

2.2  Flats Eelgrass Habitats 

Flats Z. marina sites are shallow embayments with extensive broad shallows that appear to have 

little slope within the vegetated zones.  Slightly more than half of the total area of Z. marina 

habitat in Puget Sound is characterized as flats; one large embayment, Padilla Bay, contains 

approximately 20% of the Z. marina in Puget Sound (Berry et al. 2003). Flats sites may be 

further sub-classified into river-influenced flats such as river deltas, and tide-influenced flats 

(pocket beaches and other sites that lack a significant source of freshwater and associated 

sediment input) (Figure A2).  Periodic pulses of sediment in river- influenced flats sites may 

generate shallow shoal complexes that can be highly dynamic over timeframes of months to 

years, leading to a continually changing mosaic of eelgrass patches interspersed with 

unvegetated shoals (Marbà et al. 1994).  
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Figure A2. Illustration of flats geomorphic classifications of Z. marina habitats (modified from 
Berry et al. 2003). 

 

 

3.0   SPATIAL AND TEMPORAL VARIATION IN EELGRASS BED LOCATION 

Within eelgrass habitat, eelgrass is expected to fluctuate in density and patch extent and can 

expand, contract, disappear, and re-colonize areas within suitable environments based on 

prevailing environmental factors (e.g., turbidity, freshwater flows, wave and current energy, 

bioturbation, temperature, etc.).  Because the maximum depth of seagrass colonization is 

controlled by light availability, tracking the deep edge of growth can provide information on the 

quality of the estuarine light environment over time relative to local and regional water quality 

standards.  Upslope movements (deep  shallow) in the location of the deep bed edge have 

been used as an indicator of some type of chronic disturbance, either natural or anthropogenic, 

that results in increased turbidity and reduced light availability for seagrasses. 

Eelgrass meadows in Puget Sound are characterized by substantial interannual variability that 

appear to be related to the occurrence of El Niño climate events, emphasizing the importance of 

multi-year surveys to adequately characterize seagrass abundance and distribution in a particular 

area (Nelson 1997).  Vegetated eelgrass areas on the Pacific coast can expand by as much as      



15 

 

5 meters (m) and contract by as much as 4 m annually (Washington Dept of Natural Resources 

2012). To account for these normal fluctuations, Fonseca et al. (1998) recommends that seagrass 

habitat include the vegetated areas as well as presently unvegetated spaces between seagrass 

patches.  

Patterns in eelgrass bed ‘patchiness’ or fragmentation are related to the degree of exposure to 

disturbance from wind, waves and tidal currents.  Wind-generated wave dynamics and tidal 

currents create sediment movement, which may either bury plants, expose roots and rhizomes or 

during heavy storms even uproot entire plants (Kirkman and Kuo 1990). Plant burial was found 

to be an important mechanism of gap formation in a seagrass system in Tampa Bay, USA (Bell 

et al. 1999) and the patch dynamics of Zostera marina vegetation in Rhode Island, USA was 

likewise thought to be controlled by sediment movement (Harlin and Thorne-Miller 1982).  

Eelgrass patches may be constantly moving even during periods when a relatively constant total 

eelgrass area suggests stable conditions in the population. For example, although the total area of 

eelgrass was quite stable in the 1980s in Amager, Denmark, where a complex system of 

alternating eelgrass belts and sandbars is found, about 55 % of the eelgrass changed between two 

consecutive mappings (Frederiksen et al. 2004). The mechanism behind is probably that 

extrinsic disturbance factors constantly change growth conditions in the exposed areas and keep 

the eelgrass populations in a state of continuous re-colonization. The maps showed that the 

eelgrass belts migrated in a northeasterly direction and the sandbars migrated in the same 

direction. Outer sandbars feed the inner sandbars with sediment and substantial transportation of 

sand thus occurs along the sandbars (Frederiksen et al. 2004). This sediment movement most 

likely led to either burial or erosion on the western edges of the eelgrass patches and new growth 

mainly occurred in the eastern parts.  Similar patterns have been observed in the eelgrass beds 

associated with a flood tide delta in Rhode Island, USA (Harlin and Thorne-Miller 1982), and in 

Tillamook Bay, OR. Comparison of historic eelgrass maps and aerial imagery in Tillamook Bay 

suggests that eelgrass associated with shallow sandy shoals may have become buried or eroded 

over time, then became re-established in different locations as the shoals shifted in response to 

current or sediment pulses (Figure A3).  Other areas in the Pacific Northwest that exhibit this 

pattern include eelgrass beds near the mouth of the Dungeness River in northern Washington. 
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Figure A3.  Historic maps of eelgrass distribution on river-influenced flats in Tillamook Bay, OR (shown 
as light green polygons) superimposed on more recent aerial photography, showing apparent changes 
in the location of the eelgrass beds over time in an area with dynamic sediment movement and 
shoaling.  
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APPENDIX B: Example Data Sheet and Eelgrass Habitat Maps for Tier 1 

Surveys 

 

 

Site:  Date:  Observers:  
Transect No.  X  Start Time:  Stop Time:  
GPS Positions:  Transect Start:  Transect End:  
Eelgrass Boundaries  Upper:  Lower:  

Station  Distance 

(m or ft)  
% Cover  Species Present  

  Z. marina       Z. japonica         Macroalgae  

Notes  

1  2      25  Ulva Substrate: sand/shell  

2  7    10  15  Upper boundary of Z. japonica zone  

3  12    45  20    

4  17    60    Substrate: sand  

5  22    45      

6  28    80      

7  35  5  60    Upper boundary of mixed Z. marina and Z.  
japonica zone  

8  40  20  50      

9  43  50  10    Lower boundary of mixed Z. marina and Z.  
japonica zone  

10  45  55      Upper boundary of Z. marina zone  

11  50  70        

12  55  80      Dense Z. marina, flowering shoots present  

13  60  65      Substrate: muddy sand  
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Figure B1. Graphic depiction of eelgrass habitat definition including spatial distribution 

and aerial coverage of vegetated cover and unvegetated eelgrass habitat (from NOAA 

Fisheries 2014; California Eelgrass Mitigation Policy and Implementing Guidelines).  
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APPENDIX C : Identification of Zostera marina and Zostera japonica  

  

Zostera marina (eelgrass) Status: Native  

 

  

Habitat: marine to brackish waters, lower intertidal and shallow subtidal; sandy to muddy sediments.  

Zostera marina is the most widely distributed seagrass in the world.  It’s range spans the area from 

Alaska to California on the West Coast and is also found on the North American East Coast, Europe, Asia, 

and the Middle East. Common in low intertidal and subtidal zones to a depth of 20-30 feet along 

sheltered areas with sandy or muddy beaches.  Leaf blades are usually about ½ inch (8-10 mm) wide but 

may be narrower. The blades reach a length of 10 ft (3 m) and are flat. This species blooms from June 

through August.  The inflorescence (flower clusters) grow on the tips of long shoots separate from the 

leaf blades.   

Ecology: Eelgrass habitats play an important role as foraging habitat for juvenile salmonids, 

particularly chum and Chinook.  Pacific eelgrass stands also provide habitat for other important fishes 

and shellfish including Dungeness crab, starry flounder, and sturgeon. Spawning Pacific herring utilize 

eelgrass as a substrate to deposit eggs.  Pacific eelgrass beds also harbor species of infauna and epifauna 

including polychaetes, gastropods, bivalves, amphipods, echinoderms, and other crustaceans that are 

known prey of many commercially valuable fish and invertebrates.  Eelgrass meadows are also 

important foraging habitats for many species of migratory geese, ducks, and swans.  Pacific Black Brant 

feed almost exclusively on eelgrass (both native and introduced) and their populations can be affected 

by declines in eelgrass abundance. Eelgrass leaves, roots, and rhizomes attenuate wave energy and 

provide shoreline stabilization.   Eelgrass beds also sequester carbon and may play a role in minimizing 

the effects of ocean acidification, thus helping to mitigate the effects of global climate change.  
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Zostera japonica (dwarf eelgrass)  Status: Introduced  

  
  

Habitat: marine to brackish waters, lower intertidal and shallow subtidal; sandy to muddy 

sediments. It typically occupies the upper to mid-intertidal zone at a higher elevation than the 

native eelgrass, Z. marina.    

Z. japonica forms dense stands in shallow, sheltered bays and estuaries. In its native range, it 

occurs from Korea and Japan northward to the Kamchatka Peninsula in Russia.  In North 

America, this species ranges from southern British Columbia to Humboldt Bay, California, and is 

expected to continue expanding its range. In the northern part of its range in North America 

(British Columbia), Z. japonica lives as an annual, overwintering as buried seeds. Towards the 

southern part of its established range in North America, it occurs as a short-lived perennial. It is 

listed as a Class C noxious weed in California and Washington, but is not listed on the federal 

invasive species list.  It reproduces vegetatively through rhizomatous cloning and sexually 

through seed production. The habitat structure provided by this species may perform similar 

functions as native eelgrass; in particular, additional research is needed to verify its role in 

fisheries species utilization.  This species is known to be an important food source for many 

species of migratory waterfowl, especially Pacific Black Brant.  The dispersal of the seeds, both 

within and between estuaries, may be aided by waterfowl species.   

Den Hartog, C. 1970.  The Sea-Grasses of the World.  North-Holland Publishing Company.  

Amsterdam, Netherlands. 272 pp.  
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Distinguishing Native and Introduced Eelgrass  

 

DISTINGUISHING CHARACTERISTIC  

Z. japonica has roots in pairs at each rhizome node.  

Z. marina has roots in bundles at each rhizome node.  

    

  

  

Zostera japonica   

Japanese eelgrass   

Introduced   

Zostera marina   

Native   Eelgrass   

typical ( )   

IMPORTANT:   

Leaf size is NOT a reliable indicator.  

Z. marina   can  sometimes look   very  

similar to  Z. japonica !   

Zostera  
marina   
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Appendix J. Technical 
Memorandum:  Operational 
Definition of an Eelgrass 
(Zostera marina) Bed 

Introduction 

Proposed habitat conservation measures aimed at minimizing or avoiding impacts to eelgrass 

(Zostera marina) are currently being discussed among representatives of Washington’s shellfish 

aquaculture industry and management and aquatics program staff of the Washington State 

Department of Natural Resources (Washington DNR). Questions have emerged from these 

discussions regarding what constitutes an edge of eelgrass bed: What minimum presence of 

eelgrass shoots comprise the edge of a bed? Are groups of non-contiguous eelgrass presence 

considered the edge of one larger bed, or are they treated as independent bed edges? Is there a 

minimum time during which observable shoots must persist in an area to be considered a bed? The 

answers to these questions will have direct effects on activities that are constrained because of 

their proximity to eelgrass beds. 

In an effort to address these questions, a technical workgroup was convened with the goal of 

establishing criteria for defining an eelgrass bed. Workgroup participants included scientists and 

technical representatives from the Washington DNR Aquatics program, U.S. Fish and Wildlife 

Service, NOAA Fisheries, University of Washington, Northwest Indian Fisheries Commission, 

Point-No-Point Treaty Council, Squaxin Island Tribe, and shellfish aquaculture industry. This 

technical memorandum summarizes the information discussed at the meetings, reviews analyses of 

available data, proposes criteria for defining an eelgrass bed, and recommends metrics that should 

be considered when developing conservation measures with the intent to minimize and avoid 

impacts to eelgrass beds.  

Goal 

The overall goal is to determine the criteria for an operational definition of the minimum presence 

of eelgrass necessary to be considered a bed edge. The definition must be sufficient for site-level 

application for the sustainable management of eelgrass. It must allow for repeatable delineation of 

the beds, so that any impacts from activities authorized by Washington DNR in marine tidelands 

can be avoided or minimized with the application of appropriate conservation measures.
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Objectives and constraints 

 The eelgrass edge criteria must be applicable at the project or site scale (on the order of 

0.1–10 acres). This definition must be precise enough to provide a basis for siting of 

projects on state-owned aquatic land parcels where eelgrass is present. 

 Experienced environmental scientists must be able to apply the criteria using common 

survey methods and equipment. 

 While a definition based on ecological principles is preferable, in the absence of 

conclusive scientific evidence, an operational definition based on best available scientific 

information will suffice, so long as it is understood that this will be adaptively managed 

as information is gathered through implementation and monitoring. 

Background 

Currently used or proposed criteria for 
eelgrass presence and bed edge 

In response to the accumulation of scientific evidence demonstrating the importance of eelgrass to 

nearshore ecological function, entities tasked with sustainable stewardship of coastal habitats are 

striving to maintain and restore eelgrass (Orth et al., 2006; Phillips, 1984; Thom et al., 2008). This 

challenge requires the ability to delineate beds and to measure current status and change in the 

edge over time. Table 1 summarizes various eelgrass bed and edge criteria and identifies the 

agency or entity that has implemented or proposed each. Some of these definitions are proposed 

based on local empirical data; others are based on knowledge of a specific ecological function of 

the eelgrass (e.g. fish refugia). Some were developed for research or resource management 

purposes, while others were developed for regulatory implementation. 
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Table 1. Existing criteria for defining eelgrass presence and bed edge. 

Implementation agency, 

entity, rule, or policy 
Contiguous bed and bed edge criteria 

Washington DNR Habitat 
Stewardship—Eelgrass 
Surveying Criteria 

Contiguous separation distance ≤ 1 m. 

Minimum shoot density 3 shoots/m
2
. 

Washington DNR 
Submerged Vegetation 
Monitoring Program  

Any eelgrass presence within a 1-m
2
 area along the 

length of a video transect that is continuously sampled at 
approximately 1-m

 
intervals until no presence is detected. 

A single shoot within a 0.1-m
2
 grab sample. 

U.S. Army Corps of 
Engineers Regional General 
Permit-6 

An area of tidal substrate supporting eelgrass covering a 
minimum of 25% of the substrate.  

Tampa Bay Estuary 
Program—Proposed 
Definition 

A seagrass bed is ≥ 10% cover within a 10–30-m long 
transect line. The zone of eelgrass occurrence is defined 
as 1 shoot/m

2
 for at least 10 m along a line transect 

(Virnstein et al., 1998). 

Alaska Sea Grant 
A persistent patch of eelgrass from qualitative 
observations requires ≥ 50 shoots/m

2 
(Wyllie-Echeverria & 

Thom, 1994). 

Massachusetts Division of 
Marine Fisheries 

The edge of the bed is defined as having two points: 1) 
the distance to the end of the continuous meadow and 2) 
the distance to the last shoot (Evans & Leschen, 2010). 

Seagrass Net 

To be considered within the same bed, any eelgrass 
present within a 1-m

2
 quadrat must be within ≤ 1 m 

distance of a nearby eelgrass presence. The edge or 
transition area is indicated by the distance of the furthest 
eelgrass shoot that is beyond this 1-m contiguous bed 
from a fixed point along a fixed transect. Eelgrass shoot 
counts (within 0.0625 m

2
) and percent cover (in 0.25 m

2
) 

is estimated in 12 randomly pre-selected quadrats along a 
50-m transect (Short et al., 2006). 

Seagrass Watch 

A single shoot within a 1-m
2
 quadrat along a 50-m long 

transect constitutes presence.  Both shoot counts and an 
estimate of percent cover are recorded (McKenzie et al., 
2003). 

Ospar Commission  

A seagrass meadow is defined as an area of at least 2 x 2 
m covered in seagrass. If < 10 m exists between patches, 
they are considered of the same meadow. If a distance > 
10 m exists between patches, they are of separate 
meadows (MARBIPP, 2006). 
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Scientific literature relevant to the 
definition of minimum eelgrass presence  

When developing a scientifically based definition of the minimum eelgrass presence needed to 

constitute an edge, the following points should be considered.   

 In many areas, eelgrass occurs as a compound grouping of non-contiguous areas.  

(Fonseca & Bell, 1998). A separation distance criterion must be established to determine 

how to group these non-contiguous areas. 

 The minimum detectable quantity of eelgrass depends on the sampling method used, but 

most site-scale sampling methods are able to detect eelgrass to the individual shoot.  A 

minimum threshold that constitutes an accepted eelgrass presence (e.g. single shoot, area 

of specified shoot density, or percent cover) must be defined.  

 Eelgrass morphological structure consists of above-ground shoots as well as below-

ground rhizomes. The below-ground portion of the plant is often of larger dimension and 

mass than the visible, above-ground portion.   

 Eelgrass presence affects the scope of habitat provision (benthic invertebrates, fish, or 

birds) (Hirst & Atrill, 2008). 

 Eelgrass presence parameters (area and density) affect the ability of eelgrass to stabilize 

sediment and trap suspended particulates (Koch, 2001).  

 Eelgrass biomass, area, and density affect the level of primary productivity and the 

contribution of the eelgrass to the detrital food web. 

 Persistence of the vegetated area is another issue: A minimum eelgrass presence may be 

needed for an eelgrass unit to remain present year after year. Interannual cross- and long-

shore variability of seagrass bed edges has been documented (Frederiksen et al., 2004; 

Marbà & Duarte, 1995; Grette Associates, 2005, 2008, 2009). 

 Resilience of the vegetated area is a factor: A minimum residual eelgrass presence or 

density may be required to re-establish an area after it has experienced a disturbance 

(natural or anthropogenic). 

 Distances between eelgrass shoots affect seed dispersal and successful gene flow. 

These considerations relating to eelgrass attributes are important in understanding the ecological 

function of an eelgrass bed. Scientific studies with specific metrics regarding ecological attributes 

and functions of eelgrass beds are summarized below. This information was reviewed and 

discussed in the workgroup meetings when the participants considered the development of criteria 

for determining the minimum size, density, and persistence of an eelgrass bed edge. 

Habitat 

 Fonseca et al. (1998) observed that eelgrass present in areas as small as 1–2 m
2
 had 

greater numbers of fish, shrimp, and crab than adjacent unvegetated areas. 

 A study comparing benthic infaunal biodiversity of Zostera vegetated patches (ranging in 

size from 0.24 m
2
 to 17 m

2
) and unvegetated intertidal substrate areas found that all 

Zostera patches supported a higher level of biodiversity than bare sand, and neither the 

patch size nor mean shoot density had any impact on the level of diversity (Hirst & 

Attrill, 2008). 
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 In the United Kingdom, Eelgrass fragmentation was examined for its role in benthic 

infauna community composition by comparing infaunal communities in a continuous 2.3 

ha meadow to the composition of patches 6–9 m
2 
(Frost et al., 1999). Communities 

differed as a result of small changes in species abundance, but not in diversity; however, 

polychaetes generally associated with unvegetated habitats (such as Magelona mirabilis) 

were found to be more common in the fragmented bed than in continuous beds. 

 Neither patch size, nor location of sampling within patches (edge or central) exerted as 

much influence on the infaunal community as sediment composition (Frost et al., 1999). 

Total abundance did not differ between patch sizes in univariate analyses. Multivariate 

analyses, on the other hand, showed that the species that contributed most to the 

difference in assemblage composition between patches were more abundant at the edge. 

In particular, the nematodes Capitella capitata and Spio filicornis—species tolerant of 

random disturbance (stochastic events)—were more abundant in samples collected at the 

edge of beds than in samples collected from the interior of the beds.   

 An examination of fish and amphipod abundance across seagrass areas (Halodule 

wrightii) ranging from 5 to 93 m
2
 in size suggested no consistent relationship between 

faunal abundance and patch size (Bell et al., 2001).  

 Based on a study of varying eelgrass densities (140 to 660 shoots/m
2
), no significant 

differences in the number of fishes sampled were detected between eelgrass plots 

(Wyllie-Echeverria et al., 2002, as cited in Blackmon et al., 2006).   

 It has been shown that throughout the Puget Sound, eelgrass habitat is used by juvenile 

salmonids, but no indication of how this habitat is used based on the density and structure 

of the eelgrass beds has been provided (Blackmon et al., 2006). 

 Epibenthic faunal abundance was closely related to eelgrass presence and shoot 

development when unvegetated, transplanted, recently seed-colonized, and mature 

eelgrass habitats in North Carolina were compared (Fonseca et al., 1990).   

 Blue crab survival in the Chesapeake Bay was found to vary with the size and complexity 

of eelgrass patches (Hovel & Lipcius, 2001, as cited in Blackmon et al., 2006). Juvenile 

blue crab density decreased as patch size increased, and greater habitat fragmentation 

improved blue crab survival, because the fragmentation resulted in an increase in 

seagrass edge habitat. Crab density was significantly lower, however, in isolated patches 

separated by large areas of unvegetated habitats. 

 In a New Zealand study, seagrass patch variables (patch size, percent cover, and biomass) 

explained only 3–4 percent of the variation in benthic community, while landscape 

variables (fractal geometry, patch isolation) and wave exposure explained 62.5 percent of 

the variation in faunal abundance data (Turner et al., 1999).  

Sediment characteristics 

 Both above and below ground, eelgrass structure contributes to sediment stabilization: 

Above-ground shoots have the capacity to reduce water flow, which lowers the velocity 

of the flow on the sediment substrate, thus reducing the amount of sediment that can be 

entrained and transported (Fonseca el al., 2006).   

 Eelgrass acts as a sediment sink, with above-ground shoots trapping sediment and 

particulates from the water column and below-ground rhizomes and roots anchoring 

sediment. This can result in sediment accretion that changes the bathymetry, causing 

mounding in areas around seagrass (Walker, 1999).   
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 The capacity of eelgrass to accrete sediment increases with increasing patch size. The 

magnitude of slowing current velocity and accreting sediment is based on the density of 

the eelgrass shoots, hydrodynamic conditions of the area, and depth of the water column 

above the plants (Koch, 2001). Changes in physical conditions trap nutrients and stabilize 

habitats that are necessary for seagrass growth and recruitment. Elimination of newly 

developed small patches will slow or entirely inhibit the development of larger, more 

extensive patches (Kendrick et al., 2005). 

 Patches as small as 0.3 m and 1.0 m along the axis of current flow were capable of 

significantly reducing the velocity of the current relative to bare mud-flat habitat 

(Fonseca & Koehl, 2006). Eelgrass has been shown to attenuate 43 percent of wave 

energy in a 1-m long vegetated transect (Fonseca & Cahalan, 1992).   

 A significant difference in median grain size and sorting coefficient was observed when 

contiguous and fragmented eelgrass areas were compared, and median grain size was 

found to be the variable that best explains multivariate community patterns (Frost et al., 

1999).    

Primary productivity/contribution to food web 

Seagrasses can act as short-term sinks for refractory carbon: 1–2 years for above-ground biomass 

and 4–6 years for below-ground biomass (Mateo, 2006).  Eelgrass has the capacity to survive and 

maintain actively growing perennial populations even in its northern-most limit. It does this by 

storing excess carbohydrates in the rhizomes during the dark winter. There is, therefore, important 

ecological function being provided by below-ground structure that may be laterally distant from 

the visible above-ground shoots (Duarte et al., 2002).  

Persistence 

In plots established outside a continuous vegetated meadow, patch mortality was observed to 

decrease as the size (area) and age of the patch increased, and only patches with more than 32 

shoots survived. The critical minimum patch area required for survivorship varied seasonally 

(Olesen & Sand-Jensen, 1994). 

Fonseca and Bell (1998) found that eelgrass areas with less than 50-percent cover were less stable 

than those with greater percent cover. 

Resilience 

Compared with seedlings, surviving adult plants and small patches may contribute considerably to 

recolonization of a dieback area, as these plants have faster elongation and branching rates and a 

lower mortality rate than seedlings (Greve et al., 2005). 

Reproduction 

There are differences in the relative importance of sexual and clonal portions of eelgrass life 

history that must be considered when attempting to set management standards for protection and 

maintenance of genetic structure (Table 2). 



Appendix J  Technical Memorandum:  Operational Definition of an Eelgrass Bed   

SEPTEMBER 2013—Washington State Department of Natural Resources DRAFT Aquatics HCP J-7 

 

Seed Dispersal Distance and Transport Time 

 Ninety-five percent of pollination occurs within 15 m of the source. Eighty-three percent 

of seeds are dispersed within 5 m of the source and 100 percent within 50 m 

(Ruckelshaus, 1996). 

 Pollen is viable for only 7–48 hours (de Cock, 1980; Cox et al., 1992). 

 Once buried in sediment, seeds of eelgrass can remain dormant for one to two months 

(Moore et al., 1993).  

 Reproductive shoots carrying maturing seeds can be carried by currents or consumed by 

water fowl and transported long distances (kilometers).   

 Germination rates range between 5 and 20 percent, with 80 percent of the seedling’s 

germination within a 5-m diameter of the source (Orth et al., 1994). Germination rates 

were found to depend not on seed-density, but on patch size (Orth et al., 2003). 

Genetic Neighborhood 

 In a study of genetic diversity and patch size, with patches ranging from 0.25 m
2
 to 440 

m
2
, Ruckelshaus (1996) found that genetic diversity was inversely related to patch size. 

Genetic diversity tended to be higher in intertidal areas that had smaller patch sizes and 

were more prone to disturbance. 

 Ruckelshaus (1994) found that a distance of four meters around a plant was adequate to 

genetically separate individual plants. 

 
 
Table 2. Summary table: Values of eelgrass metrics associated with 
ecological attributes from the review of literature.  

Ecological 
attribute 

Eelgrass metric Value 

Benthic Habitat Minimum area of eelgrass 
presence that affects habitat 
value 

1–2 m
2
 (Fonseca et al., 1998) 

0.24 m
2
 (Hirst & Attrill, 2008) 

Sediment Stability Minimum area of eelgrass to 
significantly reduce current 
velocity 

0.3 m
2
 (Fonseca & Koehl, 2006) 

Seed Dispersal Seed dispersal distance 5 m (Ruckelshaus, 1996) 

Genetic Diversity Distance at which plants can 
be genetically distinguished 

4 m (Ruckelshaus, 1994) 

Vegetative 
Reproduction 

Mean rhizome growth rate 26 cm/yr (Marbà & Duarte, 1998; 
Sintes et al., 2006) 

Persistence Minimum eelgrass density 
associated with persistence 

> 32 shoots per patch area 
(Olesen & Sand-Jensen, 1994) 
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Ecological 
attribute 

Eelgrass metric Value 

Eelgrass cover associated with 
greater persistence 

> 50% cover (Fonseca & Bell, 
1998) 

Summary of available data relevant 

to the definition of eelgrass edge  

Existing eelgrass data available to the staff of Washington DNR were evaluated to see if any 

patterns in eelgrass density, patchiness, or persistence emerged, or if perhaps there was any 

indication that further investigation of these data might be useful in developing eelgrass bed 

criteria. The four data sources described below include the Dumas Bay SeagrassNet site, the 

Submerged Vegetation Monitoring Program density grab samples, mitigation monitoring data 

from a Maury Island site, and plant morphology data from the Washington DNR stressor project. 

Dumas Bay SeagrassNet site 

SeagrassNet is a worldwide ecological monitoring program that documents the status of seagrass 

resources. The program began in 2001 in the western Pacific and now includes 115 sites in 32 

countries. It has a global monitoring protocol and web-based data reporting system.  A 

SeagrassNet site was established in Dumas Bay in Washington’s Puget Sound in May of 2008.  

SeagrassNet sampling protocol requires that three fixed transects be established in an area of 

seagrass presence that is representative of or typical for the area. The fixed transects run along the 

shore, parallel to the beach. Transect A is located approximately one meter into the contiguous 

eelgrass from the shoreward edge. Transect C is one meter into the contiguous eelgrass from the 

waterward edge. Transect B runs through the center of the contiguous eelgrass (Figure 1).   

Contiguous is defined as any eelgrass shoot that is within one meter or less of another eelgrass 

shoot. Furthest shoot data were compiled and analyzed from the Dumas Bay SeagrassNet site. The 

furthest (last, terminal) shoot is measured from three points (0, 25, and 50 m) perpendicular from 

the shallow (transect A) shoreward and deep (transect C) seaward transects (Figure 1a). The 

distance to the edge of the area of contiguous eelgrass (where the space between shoots is equal to 

or less than one meter) is also measured from these points. Data is collected quarterly.   
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Figure 1. Illustrates SeagrassNet transect placement, measurement to 
bed edge, and furthest shoot distance.  
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Figure 1a. Schematic of SeagrassNet site and distance to edge of bed 
(black line) and furthest shoot distance (orange line). (Diagram not to 
scale). 

 

From May 2008 through January 2011, thirteen sampling events occurred. There were not enough 

sample times for the collection of furthest shoot data from the deep transect (transect C) to provide 

any meaningful information for the analysis. A basic evaluation of the furthest shoot data collected 

from the shallow transect (transect A) revealed the following:  

Furthest shoot distance: Dumas Bay  

Sparse, patchy eelgrass along the intertidal edge of larger contiguous eelgrass areas had been 

observed in the field by many of the workgroup participants. From the discussion, it seems that the 

size, distance from the contiguous eelgrass, and ephemeral nature of this eelgrass varies 

considerably. This prompted an examination of the available data to see whether any of these 

parameters might be quantified. Here, the furthest shoot refers to the single furthest shoot from the 

central area of the eelgrass. 

 Furthest shoots were not present throughout the year; they were only present during the 

spring and summer sample times.  

 When furthest shoots were present, they were located near the places they had been 

previously detected (the maximum change in furthest shoot distance was 5.3 m).  

 The maximum distance of a furthest shoot from the contiguous edge was 8.9 m.   

 The change in contiguous edge location over all sampling times (through all seasons) 

ranged from 0.4 m at the center position to 11.3 m at the left position.  
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 Net change from the first spring sampling (May 2008) to the most recent spring sampling 

(April 2010) was much smaller, ranging from 0.1 m at the center position to 1.7 m at the 

left position.  

The results are summarized in Table 3 and Table 4. 

Table 3. Furthest shoot distance, Dumas Bay, SeagrassNet site. 

 

Table 4. Change in edge and furthest shoot location, Dumas Bay, 
SeagrassNet site. 

Position on 
Transect A 

Max seasonal 
change in edge 

distance (m) 

Max annual 
change in edge 

distance 
Max change in furthest 

shoot distance (m) 

Center +0.4 +0.3 +1.5 

Left -11.3 -3.4 -1.7 

Right -6.1 +2.2 +5.3 

 
This analysis provided some insight into the magnitude of changes in the edge and furthest shoot 

location, as well as the seasonality in the expansion and contraction of the edge and furthest shoot 

presence at this site. In addition, a pilot investigation of data from Washington DNR’s Submerged 

Vegetation Monitoring Program was conducted to see what might be learned about furthest shoot 

distance from contiguous bed edge and what comparisons could be made among the different 

areas of Puget Sound. This preliminary analysis indicated that the furthest shoot distance could not 

be estimated using the Submerged Vegetation Monitoring Program’s data. The program’s data did 

not distinguish between a single blade in a square meter and thousands of shoots per meter. 

Further analysis of the data was therefore abandoned.   

Eelgrass density: Dumas Bay  

Eelgrass density and percent cover estimates were conducted at fixed random sites along three 50-

m longshore transects at +1, 0, and -1.6 mean lower low water (MLLW) tidal elevations.  Seasonal 

variability is apparent in density and percent cover, with maximum values observed in the spring 

and summer (data not shown). Interannual variability is also observed. This is apparent from the 

range in density and the standard errors reported only for the July samplings (the SeagrassNet site 

is sampled quarterly) of 2008–2011, as documented in Table 5. 

 
 

 

 

Shallow transect furthest 
shoot distance (M) 

n 
(# Times furthest 
shoots present) 

n 
(# Times bed 
examined for 

furthest shoot) Max Min Mean 
Std 
dev 

SeagrassNet Site,  
Dumas Bay 
May ‘08–Jan ‘11 

8.9 1.8 6.6 2.3 7 34 
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Table 5. Shoot density and percent cover at Dumas Bay,  
SeagrassNet site. 

Transect & 
Elevation 
(MLLW) Date 

Average 
Density 
(shoots/m

2
) SE (n) 

Average 
% Cover SE (n) 

A,   +1 July ‘08 597.3 277.7 (12) 28 12 (12) 

A,   +1 July ‘09 292.0 206.7 (12) 16 9 (12) 

A,   +1 July ‘10 184.0 97.9 (12) 12 6.8 (12) 

A,   +1 July ‘11 109.3 76.8 (12)   8 5 (12) 

B,     0 July ‘08 769.6 175 (12) 46 6.6 (12) 

B,     0 July ‘09 878.7 192.4 (12) 61 7.9 (12) 

B,     0 July ‘10 892.0 135.6 (12) 72 9.7 (12) 

B,     0 July ‘11 841.3 148 (12) 62 9.1 (12) 

C,    -1.6 July ‘08 210.7 32 (12) 46 6.2 (12) 

C,    -1.6 July ‘09 280.0 33 (12) 38 4.1 (12) 

C,    -1.6 July ‘10 186.7 29.6 (12) 28 4.9 (12) 

C,    -1.6 July ‘11 130.7 10.9 (12) 26 4.3 (12) 

 

Submerged vegetation monitoring program: 
eelgrass shoot density 

Environmental parameters influencing eelgrass plant structure and eelgrass density have been 

reported in scientific literature (Boese et al., 2003; Turner et al., 1999). Workgroup participants 

have also cited field observations of geographic differences in plant structure and density. This 

encouraged an examination of the available data on eelgrass shoot density, specifically to see if 

regional differences or variability in eelgrass density over time might be quantified. 

DNR grab sample density counts 

Initial sampling for the Submerged Vegetation Monitoring Program included shoot density counts 

of grab samples collected with a van Veen sampler. An average of 23.9 shoots per sample, with a 

minimum of 1 shoot per unit area, was reported from 1,020 samples collected during 2000–2003. 

Sites sampled within each region were not necessarily sampled each year, although some sites 

were sampled in consecutive years. Sampling did not fall in the same period for each year either. 

While the absolute density numbers differed each year, visual observation of the data (see plots in 

Figure 2) does indicate a fairly consistent pattern of relative difference in shoot density among the 

five regions sampled, with Hood Canal (hdc) having the highest density, Central Puget Sound 

(cps) and North Puget Sound (nps) competing for second highest, and then South Whidbey (swh) 

and San Juan Island (sjs) with the lowest density.  
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Figure 2. Mean eelgrass shoot density from annual grab sampling by 
region, 2000–2002. Error bars are standard errors of the means.  
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Mitigation monitoring data: Maury Island 

Eelgrass at a proposed project site on Maury Island was monitored intensely in 2005, 2008, and 

2009 by the consulting firm Grette Associates LLC. Fixed grids with grid cell size of 1 x 1 m were 

established to encompass the entire eelgrass area. Dive survey sampling included eelgrass percent 

cover estimates within each square-meter grid cell, eelgrass density shoot counts within a 0.25 m
2
 

portion of each grid cell, and delineation of eelgrass presence in each square meter. Eelgrass 

survey maps from sample years 2005, 2008, and 2009 are reproduced in Figures 3–5 below, with 

eelgrass presence delineated and the density counts per 0.25 m
2
 indicated within each grid cell. 

Sampling occurred during July for 2005 and 2008, and then in August for 2009. The images are 

from Northwest Aggregates: Maury Island Gravel Dock Annual Eelgrass Survey Reports, 

December 19, 2005, September 19, 2008, and December 15, 2009, prepared for Northwest 

Aggregates by Grette Associates LLC. 

Eelgrass density: Maury Island 

Close examination of the data from eelgrass monitoring of the north, south, and control patches 

(Figures 3–5) indicated differences in the stability of the three eelgrass areas.  These findings are 

summarized in Table 6. 

 
 
 
 
 
 
 
 
 
 



Appendix J  Technical Memorandum:  Operational Definition of an Eelgrass Bed   

SEPTEMBER 2013—Washington State Department of Natural Resources DRAFT Aquatics HCP J-15 

 

Table 6. Eelgrass area and mean density at Maury Island gravel site.  
 

Patch 
Name Year 

Area 
(m

2
) 

Net Change 
in Area (m

2
) 

from ’05 to 
‘09 

Average Density 
(shoots/m

2
) 

Net Change in Avg. 
Density 

(shoots/0.25m
2
) 

from ’05 to ‘09 

North 

2005 126  77  

2008 127  72  

2009 85 -41  13 -64 

South 

2005 148  54  

2008 152  56  

2009 218 +70 28 -26 

Control 

2005 261  30  

2008 256  37  

2009 265 +4 26 -4 
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Figure 3. Eelgrass monitoring, Maury Island, north patch, 2005, 2008, 2009 (Grette Associates, 2005, 2008, 2009). 
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Figure 4. Eelgrass monitoring, Maury Island, south patch, 2005, 2008, and 2009 (Grette Associates, 2005, 2008, 2009). 
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Figure 5. Eelgrass Monitoring, Maury Island, Control Patch, 2005, 2008, and 2009  
(Grette Associates, 2005, 2008, 2009) 
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The apparent differences in contiguous eelgrass stability that the comparison of the control site to 

the other two eelgrass areas revealed may be an artifact of differences between the survey limits of 

the control site and those of the north and south sites: The control site survey was limited to a 

swath from a larger contiguous area, while the survey extents of the north and south sites 

contained the entire eelgrass presence in each case, and surveys increased if necessary to capture 

edge migration. Assessment of the comparison between the north and south sites and relative 

change for each of these two areas over time is not affected by this survey limitation. 

The eelgrass area and average shoot density remained relatively stable at the control site (again, 

this may be an artifact of the extent of the survey for this site). The eelgrass area increased in the 

south site and decreased in the north site, while the average shoot density decreased in both north 

and south patches.   

The eelgrass edge of the north site moved approximately two meters east between 2005 and 2008 

(spreading out both north and south). The northward edge contracted approximately five meters 

from 2008 through 2009.  

The western eelgrass edge of the south site migrated approximately two meters to the east (filling 

in the patchier northern portion) from 2005 to 2008. It continued to migrate approximately four 

more meters eastward between 2008 and 2009.  

Migration of the control site edges cannot be accurately assessed, because the monitoring area 

does not contain the long-shore edges of that eelgrass area. It is apparent that smaller areas of 

eelgrass along the shoreward edge were ephemeral in size and shape.  

Furthest shoot: Maury Island 

When looking at the pattern of density in all sites for three years, gradual tapering off of the 

density toward the shallow edge is never observed. In fact, some of the highest density grid cells 

are located directly on the shallow edge. The decrease in density is slightly more gradual on the 

deeper edge, but only one to two meters before complete drop-off.   

In the north, south, and control sites, furthest shoots were documented (shoots located beyond a 

meter distance of the contiguous eelgrass area) off the shallow and deep edges. A furthest shoot 

was not always present. When present, furthest shoot distances on the shoreward edges ranged 

from 1.1 m to 8.0 m. The furthest shoot distances on the seaward edges (when present) ranged 

from 2.1 m to 3.5 m. Table 7 summarizes the furthest shoot distances measured at these sites. 

While eelgrass presence did not migrate beyond the location at which a furthest shoot was found 

(shoreward or seaward), eelgrass did migrate along shore to areas where no eelgrass had been 

found during the previous sample time.  
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Table 7. Edge migration and shoot distance in eelgrass patches at Maury 
Island gravel site. 
 

Patch Name 
Year 

Sampled 

Edge Migration: 
Expansion, +, 

Contraction, -(m) 

Shoreward 
Furthest Shoot 
Distance (m) 

Seaward 
Furthest Shoot 
Distance (m) 

North Patch 
2005  1.7  _ 

2008 +2 east 2.0 2.1 

2009 -5 north   

South Patch 
2005  1.1 3.5 

2008 + 2 east _ _ 

2009 +4 east   

Control Patch 
2005  _ _ 

2008  8.0 _ 

2009  _ _ 

 

Eelgrass persistence: Maury Island 

Persistence of eelgrass area and density was evaluated in the Maury Island data (Table 8) so that it 

could be compared with the estimates provided in the literature. Only eelgrass presence that had a 

maximum area of 2 x 2 m was included in the analysis. Eelgrass that persisted beyond a season 

was larger in area and had a higher average shoot density compared to eelgrass that did not persist. 

The area of eelgrass that persisted was at least 0.3 m
2
, with minimum density of 3 shoots  

per 0.25m
2
.   

Table 8. Minimum area and shoot density for eelgrass persistence at 
Maury Island gravel site. 
 

Patch Shoot Density (shoots/0.25m
2
) Patch Area (m

2
) n 

Persistence average min max SE(n) average min max  

> 1 season 54.4 3 124 2.44 0.9 0.3 4.0 10 

< 1 season 13.7 1 36 0.76 0.6 0.1 1.0 14 

 
 
Plant morphology data: Washington DNR  
Eelgrass Stressor Project 

Plant structure provides important ecological functions. Above-ground shoots can provide three-

dimensional structure for fish refugia and for epiphyte and invertebrate attachment.  Below-ground 

structure provides habitat for macroinvertebrate attachment and sediment stabilization. 

Morphology of the above- and below-ground structure of Z. marina differs with environmental 

factors, as has been documented (Turner et al., 1999; Frederiksen et al., 2004). Plant structure is 

relevant to the development of bed criteria, because the distance between the plants and the bed 

edge is influenced by the length of shoots and rhizomes. The results of the analysis of plant 

morphology data from Washington DNR’s eelgrass stressor project are presented below (Table 9).  
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The average shoot length at four sites (SE = 1.4, n = 180) in Puget Sound was 53.1 cm, with an 

average maximum shoot length of 89.7 cm (SE = 6.5, n = 45)(Washington DNR unpublished 

data). Average rhizome length at these sites was 33.3 cm (SE = 2.9, n = 169), with an average 

maximum rhizome length of 68.4 cm (SE = 4.4, n = 43). 

 

Table 9. Eelgrass morphology metrics. 
 

Ecological 
Attribute 

Eelgrass Metric Value 

Eelgrass 
Morphology 

Shoot length 

Average shoot lengths ranged 
from 53.1 cm to 89.7 cm 
(Washington DNR unpublished 
data ) 

 Rhizome length  

Average rhizome length ranged 
from 33.3 cm to 68.4 cm 
(Washington DNR unpublished 
data) 

 

Index of eelgrass densities in Puget Sound and Willapa Bay  

Eelgrass densities measured throughout Puget Sound and Willapa Bay are presented in Table 10. 

In the workshops, it was suggested that when pre-construction eelgrass surveys are conducted for 

proposed projects, it may be possible to begin developing a spatially explicit index of patch 

densities for comparison. A preliminary compilation of eelgrass density data is presented in Table 

10; the sample size and standard error are indicated when known. These data were largely drawn 

from scientific publications, but other sources include Washington DNR Aquatics program field 

surveys, and environmental evaluation reports required for proposed projects on state-owned 

aquatic lands. These data may be helpful to those who are developing mitigation performance 

standards and selecting reference sites. These data cannot be used to determine minimum patch 

size, because they are reported as means (most often with very large variation in the mean) or 

ranges of densities, with limited or no information on sample size.   
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Table 10. Compilation of eelgrass densities measured  
throughout Washington.  

Location 
(elevation) Date 

Average or 
Range of 
Densities 

(shoots/m
2
) SE n Reference 

Puget Sound 

Lummi Bay 
Apr-May 
2007 

160.7   20 Yang (2011) 

North Samish Bay  
Apr-May 
2007 

157   20 Yang (2011) 

South Samish Bay 
Apr-May 
2007 

177.1   20 Yang (2011) 

Padilla Bay 
Apr-May 
2007 

207.8   20 Yang (2011) 

Similk Bay 
Apr-May 
2007 

78   20 Yang (2011) 

Kayak Point 
Apr-May 
2007 

50.7   20 Yang (2011) 

North Hood Canal 
Apr-May 
2007 

137.8   20 Yang (2011) 

Dabob Bay, Hood 
Canal 

Apr-May 
2007 

155.9   20 Yang (2011) 

Edmonds  
Apr-May 
2007 

89.1   20 Yang (2011) 

Carkeek Park 
Apr-May 
2007 

212.2   20 Yang (2011) 

Golden Gardens 
Apr-May 
2007 

156.4   20 Yang (2011) 

Seabeck, Hood 
Canal 

Apr-May 
2007 

277.1   20 Yang (2011) 

Lynch Cove, Hood 
Canal 

Apr-May 
2007 

76.2   20 Yang (2011) 

Purdy Spit, Car 
Inlet 

Apr-May 
2007 

260   20 Yang (2011) 

Rocky Point, Case 
Inlet  

Apr-07 150   20 Yang (2011) 

  May-07 89   20 Yang (2011) 

Union, Hood Canal 
Apr-May 
2007 

81.5   20 Yang (2011) 

Dumas Bay 
Apr-May 
2007 

141.8   20 Yang (2011) 
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Location 
(elevation) Date 

Average or 
Range of 
Densities 

(shoots/m
2
) SE n Reference 

Dumas Bay: 
Washington DNR 
SeagrassNet Site  Apr-08 464.9 77.5 36 

Washington 
DNR 
unpublished 
data 

(-1.6 to +1 MLLW) 

  Jul-08 525.9 87.6 36 
DNR 
unpublished 
data 

  Apr-09 479.5 79.9 36 
DNR 
unpublished 
data 

  Jul-09 483.6 80.6 36 
DNR 
unpublished 
data 

  Apr-10 352.4 58.7 36 
DNR 
unpublished 
data 

  Jul-10 420.9 70.2 36 
DNR 
unpublished 
data 

  Apr-11 392.2 66.4 36 
DNR 
unpublished 
data 

  Jul-11 360.4 60.1 36 
DNR 
unpublished 
data 

Post Point Outfall, 
Bellingham 

2005 22–61     
City of 
Bellingham 
(2005) 

Golden Tides, 
Bellingham 

Jun-06 28–39     
Geomatrix 
(2007) 

  Jul-08 29–88     
Geomatrix 
(2008) 

Taylor Ave. Dock, 
Bellingham 

Jul-98 42–238   30 
Talyor Assoc. 
(1998) 

  2004 49–235     
Anchor Env. 
(2004) 

Shannon Pt., 
Bellingham 

2009 5–50     ATSI (2010) 
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Location 
(elevation) Date 

Average or 
Range of 
Densities 

(shoots/m
2
) SE n Reference 

Maury Island 
Gravel Site (North) 

Jul-05 77     
Grette Assoc. 
(2005) 

  Jul-08 72     
Grette Assoc 
(2008) 

  Aug-09 13     
Grette Assoc 
(2009) 

Maury Island 
Gravel Site (South) 

Jul-05 54     
Grette Assoc. 
(2005) 

  Jul-08 56     
Grette Assoc 
(2008) 

  Aug-09 28     
Grette Assoc 
(2009) 

Maury Island 
Gravel Site 
(Control) 

Jul-05 30     
Grette Assoc. 
(2005) 

  Jul-08 37     
Grette Assoc 
(2008) 

  Aug-09 26     
Grette Assoc 
(2009) 

Willapa Bay 

Oysterville 
Apr-May 
2007 

114.4   20 Yang (2011) 

Oysterville (-0.5 to 
+1.5 MLLW) 

Jul-07 290 14 20 
Ruesink et al. 
(2010) 

Stackpole (-0.5 to 
+1.5 MLLW) 

Jul-07 353 39 20 
Ruesink et al. 
(2010) 

Stackpole Flats 2007 22.8 5.3 44 
Ruesink et al. 
(2010) 

Nahcotta (-0.5 to 
+1.5 MLLW)  

Jul-07 69 7 20 
Ruesink et al. 
(2010) 

Parcel A., Willapa 
Bay 

Apr-May 
2007 

100.3   20 Yang (2011) 

Willapa Bay (7 
Locations) 

Jul-04 159.5 33.9 7 
Ruesink et al. 
(2006) 
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Summary of relevant findings 

 Changes in ecological function were observed where a very small area of eelgrass was 

present; differences in benthic community diversity were observed when a 0.24 m
2
 sized 

area of eelgrass-vegetated substrate was compared to an unvegetated substrate. An 

eelgrass area of 0.3m
2
 was documented to have increased sediment trapping function 

when compared with unvegetated bottom.  

 A minimum density of 3 shoots per 0.25 m
2
 was necessary for an area of eelgrass to 

persist from one season to the next at a site in Puget Sound.   

 With reported rhizome growth of 0.3 m per year and observed average rhizome lengths 

ranging from 0.3 to 0.7 m, a distance of 1 m would be necessary to ensure that the below-

ground biomass of two adjacent shoots are captured when delineating a bed.   

 Eelgrass edges at a site in Puget Sound were documented to migrate seasonally and 

annually. Maximum annual expansion to areas beyond the previously recorded edge was 

documented at 4 meters, while maximum annual contraction to areas of the previously 

recorded bed interior was up to 5 meters.  

 Edge migration shoreward or seaward was always within the distance defined by the 

furthest shoot; however, edges also migrate along the shore, where the furthest shoot is 

not defined. 

 Shoots greater than 1 meter from a contiguous eelgrass area have been documented 

appearing and disappearing seasonally and interannually.   

Proposed criteria 

The proposed criteria for identifying the minimum eelgrass presence needed to delineate a 

vegetated edge with demonstrated ecological function are listed in Table 11. The criteria are based 

on information derived from review of the scientific literature and examination of available field 

data (from Puget Sound sites). Note that these criteria emerged from the limited data and 

information available regarding ecological function of Zostera marina characteristics and 

dynamics and are meant to provide an operational definition. Future sampling and further analysis 

may indicate that an adaptation or refinement of these criteria is necessary. In particular, field data 

from the estuaries of Washington’s outer coast may provide scientific support for establishing 

separate criteria for those estuaries. 
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Table 11. Criteria for eelgrass bed edge and beyond.  
 
 

Terms Criteria Bed edge or 
beyond? 

Rationale 

Persistent 
Bed Edge 

 

Begin at a point within the 
interior of the bed (where ≥ 3 
shoots/0.25m

2
 within 1 m of 

adjacent shoots); move along 
any radial transect. Find the last 
shoot that is within 1 m of an 
adjacent shoot along that 
transect. 

Continue 0.5 m beyond this 
shoot: This is the bed edge.   
Both exterior and interior edges 
of bed can exist (Figure 6). 

Bed edge  Vegetated areas as small as 
0.24 m

2
 demonstrated 

different ecological function 
from unvegetated substrate. 

 3 shoots per 0.25 was the 
minimum density necessary 
for an eelgrass patch to 
persist from one season to 
the next in Puget Sound. 

 Observed average rhizome 
lengths ranged from 0.3 to 
0.7 m, and rhizome growth 
rates of approximately 0.3 m 
per year have been 
documented. Observed 
average shoot lengths 
ranged from 0.5 to 0.9 m. 

 Two adjacent shoots would 
require a minimum distance 
of 1.0 m to accommodate 
above- and below-ground 
parts of the plant. 

 A distance of 0.5 m beyond 
the last shoot is needed to 
accommodate the below-
ground rhizome of an edge 
shoot. 

Shoots or 
Patches  

Single shoot or patches < 3 
shoots/0.25m that are > 1 m 
from adjacent shoot 

Beyond  The ecological function of 
patches below this size and 
density has not been 
documented. 

 Patches below this size and 
density have been 
documented as ephemeral. 

Ephemeral 
Shoots 
and 
Patches  

Shoots or patches that may 
disappear then reappear from 
one season or year to the next 

Beyond  The ecological function of 
shoots and patches with 
limited temporal consistency 
has not been documented.   

 Ephemeral shoots and 
patches cannot feasibly be 
monitored for before-after 
effects analysis. 
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Figure 6. Schematic depicting two distinct, intact, contiguous eelgrass 
areas. Edges are 0.5 m beyond the last shoot found within 1 m of an 
adjacent shoot.  
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Conservation approaches 

The ephemeral nature of eelgrass, particularly the edges of eelgrass presence, has been 

documented in the scientific literature and by data from Puget Sound and Willapa Bay. It has also 

been anecdotally observed in the field by shellfish growers and scientists. SeagrassNet protocol 

acknowledges it by requiring measurement from a fixed transect to the edge and to the furthest 

shoot. Eelgrass at the edge is less persistent than eelgrass near the center of a contiguous area. This 

migratory characteristic of eelgrass makes it a challenge to specify protocols for detecting changes 

effected by a specific activity. It is also a problem for those making management decisions, such 

as at what distances from the eelgrass it might be appropriate to encourage use and access of the 

tidelands, while still protecting sustainable eelgrass functions. Table 12 presents some metrics 

from published literature and the recent data analysis that may be relevant in determining these 

distances. 

Table 12. Metrics relevant for developing buffers.  
 

Relevant 
ecological 
attribute 

Eelgrass Metric Value 

Potential 
Migration 

Zone 

Expansion (+) or contraction (-) 
distance 

Maximum documented 
annual bed expansion of +4 
m, and contraction of -5 m 
(Washington DNR un-
published data for two 
different sites) sampled over 
4 year period). 

Seed Dispersal Seed dispersal distance 5 m (Ruckelshaus, 1996) 

Genetic Diversity Distance at which plants can be 
genetically distinguished 

4 m (Ruckelshaus, 1994) 

Recommendations  

The revised goal described in the introduction of this memo was to determine the criteria for 

defining an eelgrass bed edge. The definition “. . . must allow for repeatable delineation of the 

beds, so that any impacts from activities authorized by Washington DNR in marine tidelands can 

be avoided or minimized with the application of appropriate conservation measures.” There was 

consensus early on among the workshop participants that the purpose of this effort was to apply 

scientific evidence to distinguish between an intact, persistent, and functioning eelgrass area and 

spare individual blades of eelgrass, ephemeral eelgrass areas, or potential eelgrass habitat. A 

comprehensive review of scientific literature and analysis of available data led to the following 

recommendations: 

 Apply the proposed criteria listed in Table 11 to delineate an edge around eelgrass 

presence. This distinguishes between contiguous eelgrass presence and sparse shoots of 

eelgrass that may be present at a site, but are not within a contiguous area. 
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 Consider the values provided in Table 12 as the uncertainty distance around an intact, 

persistent eelgrass area. It is only through siting activities within this expansion, 

contraction, and seed dispersal distance that positive or negative changes to eelgrass can 

be effectively monitored for adaptive management. 

Next steps 

It was suggested that further examination of the available data might be used to develop some 

indices of bed characteristics from different areas of the state. Various seagrass attributes (such as 

shoot density, plant architecture, and colonization rates) have been shown to have a strong 

relationship to the physical setting of an area (Frederiksen et al., 2004; Robbins & Bell, 1994; 

Turner et al., 1999). Monitoring interannual variability in shoot density and the edge location in 

different areas would provide information on how to determine best site uses that do not conflict 

with sustainable ecological function of eelgrass habitat.  

If the intent is to develop the most effective operational definition possible, it will be useful to 

design initial baseline and adaptive management sampling to evaluate the practicability of the bed 

criteria and some of the eelgrass metrics listed in Table 2. Data relevant to longshore dynamics of 

Zostera marina are limited (Frederiksen et al., 2004); therefore, Washington DNR’s adaptive 

management monitoring should include baseline sampling designed to explore interannual edge 

migration in both the cross and longshore. 

These proposed edge criteria, delineation methods, and conservation approaches are the outcome 

of a series of technical workgroup discussions. This information can serve as a starting point for 

future policy deliberations on developing effective conservation measures that will allow for 

management of resources, while encouraging sustainable uses on state-owned aquatic lands. 
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Anthropogenic Noise Impacts on Spawning and Ecology of Atlantic Fisheries: Implications for 
Managers and Long-Term Fishery Productivity. 
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I. Introduction 
The oceans are full of both natural and anthropogenic sounds. The importance of auditory stimuli is 
amplified in aquatic environments due to differences in the way sound, light, and chemicals behave 
underwater. Because water is denser and more viscous than air, the propagation of light and the 
diffusion of chemicals are both severely inhibited. In contrast, sound can move over four times faster 
and travel farther with less degradation underwater than it can through the air (Rogers and Cox 1988; 
Ward 2015). Thus sound, not light nor chemical cues, is the most important sensory system for many 
aquatic organisms, including most fishes (Tavolga 1960, 1980; Richardson et al, 1995; Stocker 2002; Au 
and Hastings 2008; Staaterman et al. 2013, 2014).  

Unfortunately, many human activities occurring in coastal and marine habitats add noise to the natural 
soundscape, and these noises affect aquatic organisms and their interactions with one another. For 
example, as rates of sound production correlate to rates of spawning and reproductive success, any 
disruptions to the effective communication within fish and invertebrate species has the potential to 
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reduce reproductive output and recruitment. The purpose of this report is to summarize our current 
understanding of the acoustic environment experienced by fishes, the human impacts on the marine 
soundscape, and how that impacts fish habitat and fisheries. While there is vast literature on the 
production and use of sound by marine mammals, including the effects of human-generated sound on 
these species, this is beyond the scope of this report, given ASMFC’s fisheries management focus. 
 

II. The natural acoustic landscape and its importance to 
fishes 
Aquatic environments, especially the oceans, are filled with abiotic sounds including tectonic activity, 
sea surface agitation, and sea ice activity. These sounds range from <10 Hz to >150,000 Hz with varying 
intensities and intermittency. Ocean waves and seismic activity produce constant low frequency noises 
of a moderate intensity, while dramatic seismic events, such as earthquakes or volcanic eruptions, 
produce relatively short bursts of very loud sounds. Weather, such as precipitation or high wind speeds, 
contributes to surface agitation causing increased abundance of 100-10,000 Hz noise (Martin et al 2014; 
Nowacek 2007; Peng 2015). Most abiotic, natural sounds are caused by surface agitation such as 
bubbles or spray impacting the water’s surface. Weather conditions contribute to agitation, causing 
increased abundance of 100-10,000 Hz noise from precipitation or high wind speeds for the duration of 
the event (Martin et al. 2014; Nowacek 2007; Peng 2015).  

Underwater noise is also generated by biotic sources, such as sound unintentionally produced as 
organisms move, forage, and release gas (Paxton et al. 2017). In addition to unintended noise, marine 
organisms make a variety of pointed sounds or calls to perform myriad biological and behavioral 
functions across different species (Peng 2015). Field and laboratory studies of fish physiology and 
behavior indicate that sound is a preferred sensory mechanism to detect predators or prey, find suitable 
habitat, orient, migrate, communicate, attract mates, and coordinate spawning (Putland et al. 2018 
Journal of Fish Biology, Ecology of fish hearing). Not only do many species use sound to locate 
reproductive partners or indicate reproductive intent (Bass et al. 1997; Maruska and Mensinger 2009; 
Lamml and Krammer 2005, Montie et al. 2017), but some species, like the Pacific marine toadfish 
Porichthys notatus, become more sensitive to particular frequencies or their counterpart’s sounds 
during periods of reproductive availability (Sisneros 2009; Maruska et al. 2012). Rates of sound 
production correlate to rates of spawning and reproductive success. Territorial species use agonistic 
calls to delineate an individual’s territory and intimidate or deter competitors or predators (Ladich 1997; 
Vester et al. 2004; Maruska and Mensinger 2009). Other uses of sound include navigation and 
orientation in the marine landscape, especially for planktonic larval stages of fishes and invertebrates 
(Radford et al. 2011; Vermeij et al. 2010), for the avoidance of predation (Remage-Healey et al. 2006; 
Hughes et al. 2014), and for communication (Buscaino et al. 2012; Janik 2014; van Oosterom 2016), and 
for locating suitable habitats for settlement (Simpson et al. 2004). 
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III. Sources of anthropogenic noise in the oceans 
Noise (unwanted sound) generated from human activities covers the full frequency of sound energies 
used by marine fishes. Anthropogenic sources of ocean noise are acute (episodic) and chronic (ongoing 
or continuous). Both types may occur within estuaries, on the continental shelf, or in open-ocean 
regions. Acute sources include pile driving, dredging, cable laying, bridge removal, and seismic surveys. 
Chronic sources include commercial and recreational boating, shipping activities, and wind turbine 
generators.  

Watercraft of all kind produce very loud undersea noise, and are the most common sources of 
anthropogenic sound in coastal waters (Stocker 2002). These sounds can be amplified by complex 
reflected paths, scattering and reverberating because of the geography and geology of the submerged 
shoreline and bottom. Watercraft generate sound primarily from propeller action, propulsion 
machinery, generators, and water flow over the hull (Hildebrand 2005). Combined, these sounds 
generated from a large container vessel can exceed 190 dB at the source (Jasny 1999; see the case study 
below). Metropolitan areas and ports contain a diverse array of watercraft which constitute the 
dominant human derived soundscape: commercial and private fishing boats, recreational watercraft, 
coastal industrial vessels, public transport ferries, military craft, personal watercraft, and many others. 
Significant underwater sound production can also be generated from bridge automobile traffic, 
particularly during peak traffic periods. 

Other inshore industrial and construction activities contribute to the aquatic soundscape. Underwater 
blasting with explosives is typically used for dredging new navigation channels in rocky substrates; 
decommissioning and removing bridge structures and dams; and construction of new in-water 
structures such as gas and oil pipelines, bridges, dams, and wind turbines. The potential for injury and 
death to fish from underwater explosives has been well-documented (Hubbs and Rechnitzer 1952; 
Teleki and Chamberlain 1978; Linton et al. 1985; Keevin et al. 1999). Pile driving activities, which 
typically occur at frequencies below 1000 Hz, have also led to fish kills (Hastings and Popper 2005). 
Intensity levels of pile driving have been measured up to 193 dB in certain studies (Hastings and Popper 
2005).  

Sub-bottom profilers are a type of shallow penetration (2–20 m), high-resolution seismic system that 
may be used in conjunction with deep penetration systems, which operates at a wide range of 
frequencies (400 – 24,000 Hz) and produces varying levels of peak sound (212-250 dB; Mooney et al. 
2020). The loudest anthropogenic noises are generated by marine extraction industries such as oil 
drilling and mineral mining (Stocker 2002). The most common source of sounds is from air guns used to 
create and read seismic disturbances (Popper and Hastings 2009; Popper et al. 2005, 2014; NOAA 2016; 
Popper and Hawkins 2016). Air guns are used to generate and direct huge impact noises into the ocean 
substrate. The sound pressure wave created aids in reflection profiling of underlying substrates for oil 
and gas. Peak source sound levels typically are 250-255 dB. Following the exploration stage; drilling, 
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coring, and dredging are performed during extraction. Each of these activities also generates loud 
noises.  

Sonar systems are used for a wide variety of civilian and military operations. Active sonar systems send 
sound energy into the water column. Sonar systems can be classified into low (<1,000 Hz), mid (1,000 – 
20,000 Hz), and high frequency (>20,000 Hz). High frequency sonar telemetry is associated with vessel 
positioning, locating, steering, and remotely operated vessel control to support resource extraction 
operations (Stocker 2002). Most vessels have sonar systems for navigation, depth sounding, and “fish 
finding.” Some commercial fishing boats also deploy various acoustic deterrent devices (pingers) to keep 
dolphins, seals, and turtles from running afoul of the nets (Stocker 2002). There is little information on 
the effects of acoustic deterrent devices on fish, however. 

 

IV. Hearing in fishes and effects of anthropogenic noise 
To understand whether and how these noises are likely to impact fishes, we need to understand their 
sensitivity to sound. This varies by species and among larval, juvenile, and adult stages (Wright et al. 
2010). Many species have the same hearing frequency sensitivity that humans do (10 to 20,000 Hz; 
Tavolga 1960, 1980; Fine et al 1977; Fay et al. 2008; Popper and Hastings 2009; Popper and Fay 2011), 
and most fish produce sounds below 200,000 Hz (Tavolga 1960, 1980; Fine et al 1977; Fay et al. 2008). 
Sound frequencies below 100,000 Hz scatter and dissipate least, travel farthest underwater (Wenz 1962; 
Au and Hastings 2008; Ward 2015), and are the frequencies fish typically use for communication (Bass et 
al. 1997; Au and Hastings 2008; Popper and Fay 2011). Certain groups of fish, such as the herrings, 
sardines, and menhaden (clupeids), can detect ultrasound frequencies above 100,000 Hz (Fine et al. 
1977b; Nestler et al 1992; Mann et al. 1997, 2001; Narins et al. 2013). 

Sound energy is transmitted through both sound pressure and water particle motion. Although there is 
growing evidence that fish and invertebrates are sensitive to the particle motion caused by underwater 
noise (Casper and Popper 2010; Mooney et al. 2010; Mueller-Blenkle et al. 2010; Nedelec et al. 2016; 
Hawkins and Popper 2017; Sole et al. 2017; Popper and Hawkins 2018), it is technically challenging to 
measure. This has led to poor assessments of the impacts of particle motion on fish and invertebrates 
(Popper and Hawkins 2018). There is more information and research on effects of sound pressure in 
bony fishes and to a lesser extent invertebrates.  

Fishes as a group have very complex and diverse interaction with sound and how they perceive it; 
however, relatively little direct research has been conducted on the impacts of noise to marine fish 
behavior, physiology, and life history. Some studies and formal observations have been conducted that 
identify general categories of noise impacts to fish: (1) physiological; (2) acoustic; (3) behavioral; and (4) 
cumulative. Add NOAA 2008 Tech memo “ocean noise” reference. 
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Figure 2 from Mooney et al. 2020 may be useful to convey levels of noise perception. (b) The potential effects of 
noise with distance from source. Generally, noise and impact on individual animals may be greater closer to the 
source. Effects change with increasing distance from the source, as the acoustic signals change including that 
received levels decrease. Figure modified from Dooling and Blumenrath (2013) 

   
 
Most fish sound production and habitat soundscape acoustic signatures are at frequencies below 5,000 
Hz (Fish and Mowbray 1970; Zelick et al. 1999; Myrberg and Fuiman 2002). This is the range of 
frequencies where underwater sound propagates best. Most human-generated chronic sounds are also 
below 5,000 Hz (Richardson et al. 1995; Au and Hastings 2008), which is of concern as fish are very 
sensitive to intense sounds below 1,000 Hz. Impacts to fish include damage to ear, nerve, and lateral line 
tissue that can lead to sound sensing loss or threshold shifts in hearing (Jasny 1999; Heathershaw et al. 
2001; Hastings and Popper 2005`). Threshold shifts result from exposure to low levels of sound for a 
relatively long period of time or high levels of sound for shorter periods, which may be temporary or 
permanent. Recovery from threshold shifts appears to require more time for fish species that vocalize 
(Amoser and Ladich 2003). Threshold shifts can impact a fish’s ability to carry out its life functions. Any 
organ with a markedly different density to seawater (e.g. swim bladder) may be susceptible to pressure-
related impacts. Some of the resulting effects on fish include a rupturing of organs and death (Hastings 
and Popper 2005). 
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Figure 1. Illustration of the spectrum of various human activity generated and fish (Goliath grouper, Epinephelus 
itajara) sound sources. Note the low frequency sound region where most biologically important sounds are 
produced (<3 kHz.) 
 
Near field (close proximity) percussion events produced by pile driving and explosions can have a lethal 
impact on fish through particle motion and sound wave compression. However, the distance from the 
disturbance and environmental setting (water density, turbulence, etc.) undoubtedly have major 
influences on potential physiological effects of particle motion and need further study before they can 
be treated in detail (Kevin et al. 1999; Thomson et al. 2015). Behavioral response of fishes to noise from 
piling installation is varied; such sound has been shown to cause cod (Gadus morhua) to initially respond 
by freezing in place; cod and sole (Solea solea) increased swimming speed for the duration of piling 
noise, although some fish appeared to habituate to the repetitive noise (Andersson 2011). The lethality 
of underwater blasts on fish is dependent upon the intensity of the explosion; however, a number of 
other variables may play an important role including the size, shape, species, and orientation of the 
organism to the shock wave; the amount, type, and detonation depth of explosive; water depth; and 
bottom type (Linton et al. 1985). Fish with swim bladders are the most susceptible to underwater blasts, 
due to the effects of rapid changes in hydrostatic pressures on this gas-filled organ. The kidney, liver, 
spleen, and sinus structures are other organs typically injured after underwater blasts (Linton et al. 
1985). Smaller fish are more likely to be impacted by the shock wave of underwater blasts than are 
larger fish, and eggs and embryos tend to be particularly sensitive (Wright 1982). However, early fish 
larvae tend to be less sensitive to blasts than eggs or post-larval fish, probably because the larval stages 
do not yet possess swim bladders (Wright 1982). Cephalopods can experience significant trauma to their 
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statocysts, structures necessary for balance and position, at cellular and subcellular levels (André et al. 
2011). 

The most chronic and pervasive impacts on regional fisheries occur when human generated sounds 
cause behavioral changes that affect critical life history activities required to maintain healthy 
populations. Masking biologically significant sounds may compromise feeding, breeding, community 
bonding, and schooling synchronization, in addition to all of the more subtle communications between 
these behaviors. Anthropogenic sounds that falsely trigger fish responses may cause animals to expend 
energy without benefits (Stocker 2002). Several studies have indicated that increased background noise 
and sudden increases in sound pressure can lead to elevated levels of stress in many fish species 
(Hastings and Popper 2005). Chronic noise levels ≥123 dB can elicit physiological (weight loss, decreased 
condition, and elevated and variable heterophil:lymphocyte ratio), behavioral (increased piping and tail 
adjustments and reduced stationarity), and vocal (increased clicking) stress responses in the lined 
seahorse, Hippocampus erectus (Anderson et al. 2011). Similarly, scallops exposed to seismic air gun 
signals resulted in altered physiology (hemolymph biochemistry) and behavior (development of a flinch 
response and increased recessing reflex) which intensified with repeated exposure (Day et al. 2017). 
Additionally, playback of seismic air gun recordings induced delayed development and malformation of 
New Zealand scallop larvae (de Soto et al. 2013). Turbine and tidal turbine noise can obscure sounds 
associated with mudflats resulting in delayed metamorphosis of estuarine crabs (Carroll et al. 2017). 
Increased ambient noise created by watercraft activity potentially reduces the ability of marine 
organisms, particularly larval forms, to receive the appropriate sound cues to settle in critical habitats 
(Jasny 1999; Scholik and Yan 2002; Hastings and Popper 2005; Stanley et al. 2012; Holles et al. 2013; 
Simpson et al. 2016; Staaterman et al. 2014). Larval reef fish are attracted to some reef sound (Mann et 
al. 2007 and Montgomery et al. 2001); furthermore, larval coral reef fish exhibit preference for certain 
frequencies of biological sound depending on Family (Simpson et al. 2008). Introduction of Great Barrier 
Reef night sounds from an intact coral reef to nearby constructed coral reefs significantly increased 
juvenile damselfish recruitment (Gordon et al. 2019); whereas day sounds appeared to repel settlement-
stage fish in the Philippines (Heenan et al. 2008).  

 
Anthropogenic noise has been demonstrated to affect catch rates. Several studies indicate that catch 
rates of fishes decreased in areas exposed to seismic air gun blasts (Engås et al. 1996; Hastings and 
Popper 2005); abundance and catch rates for cod (Gadus morhua) and haddock (Melanogrammus 
aeglefinus) did not return to pre-disturbance levels during the five-day monitoring period (Engås et al. 
1996). These results imply that fish relocate to areas beyond the impact zone (area of highest sound 
intensity), which have been corroborated with visual studies on fish abundance before and after seismic 
surveys (Paxton et al. 2017). One study indicated that catch rates increased 30-50 km away from the 
noise source, showing that redistribution of fish populations can occur over broad areas (Hastings and 
Popper 2005). Seismic surveys may have positive, no change, or negative effect on fishery catch rates 
due to variable responses among fish species such as no response, dispersal, avoidance, and decreased 
responsiveness to bait (Carroll et al. 2017).  While fish abundance can decrease due to increased 
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anthropogenic noise, such as from wind farm operation, it is unclear the extent to which the increased 
noise from wind farm operation affects individual behaviors (Mooney et al. 2020). 
 
Effect of anthropogenic noise on zooplankton is a relatively recent topic of interest. Abundance of dead 
larval and adult zooplankton increases two to threefold within one hour after passage of an active 
seismic air gun; elevated mortality extended at least 1.2 km from the air gun signal (McCauley et al. 
2017). Simulations based on the McCauley et al. (2017) findings estimate a 22% reduction of 
zooplankton population within the survey area and declining to 14% within 15 km and 2% within 150 km 
(Richardson et al. 2017). In contrast, the copepod Calanus finmarchicus was only negatively affected 
when in close proximity (≤ 10 m) to an active seismic air gun (Fields et al. 2019). 
 
Alteration of the soundscape has the potential to impact fish habitat development. Oyster larval 
settlement increased in presence of oyster reef habitat sounds (Lillis et al. 2013). Blue mussel respiration 
rates decreased resulting in altered valve gape, oxygen demand, and waste removal in response to 
sediment vibrations (Roberts et al. 2015). Unlike shellfish, Scleractinian corals appear resistant to soft 
tissue and skeletal damage after repeated exposure to a 3D seismic survey (Heyward et al. 2018).  
Seagrass meadows, which provide an acoustic refuge for prey species by attenuating high frequency 
sounds (100,000 Hz) such as those used by bottlenose dolphin (Wilson et al. 2013), may be impacted by 
sound. Submerged aquatic vegetation exposed to low frequency sounds (50-400 Hz at 157 ± 5 dB re 1 
μPa2) can develop physical damage to root and rhizome cellular structures; specifically amyloplasts 
responsible for starch production and storage, gravity sensing, and vibration reception; as well as fungal 
symbionts (Solé et al. 2021). 

V. Case Studies 

Clupeids and ultrasound 
As noted above, fishes are impacted by sound both physiologically and behaviorally. Physiological 
responses are somewhat consistent across families. However, behavioral responses can vary depending 
on species-specific hearing and sensitivity to sound. Within the family Clupeidae, the subfamily Alosinae 
(alewife, blueback herring, menhaden, shad) have poor sound detection ability, such that sound must be 
loud (high intensity) in order to hear. However, they differ from other fishes in that they have evolved 
the ability to hear in the ultrasound range of frequencies (25,000 – 180,000 Hz) if the sound intensity is 
above a certain threshold (e.g. American shad – 145 dB, Mann et al. 1997). The ability may have evolved 
as an avoidance mechanism for echolocating predatory toothed whales (Narins et al. 2013). 
  
Alewife responded to high frequency pulsed sound at 110,000 – 150,000 Hz above 157 dB (Dunning et 
al. 1992), while menhaden can detect sound at 40,000 – 80,000 Hz (Mann et al. 2001).  Ultrasound 
pulses have been used to deter alosines from power plant intakes (Narins et al. 2013). 
  
Because sound intensity above the clupeid sensitivity threshold of 145 dB and within the ultrasound 
range could impact behavior of the fish, there is concern that certain anthropogenic activities, for 
example, the use of Acoustic Deterrent Devices for marine mammals near pile driving activities, could 
impact spawning migration (Boyle & New 2018). Commented [LH20]: https://prod-drupal-
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Long-term monitoring of human interference with biological sound 
production in East Florida 
Long term deployment of hydrophones in East Florida freshwater tributaries, estuaries, and continental 
shelf reef formations was used to isolate specific fish spawning sites for long term monitoring and 
continuous acoustic assessment (Gilmore 2002; Gilmore et al. 2003). The hydrophone array allowed for 
monitoring the impact of single freighter engine/propeller noise on subtropical reef fish. A complex, 
high relief (2-8 m) rock reef formation known locally as “Horseshoe Reef” was chosen for a multiple day 
deployment of three “Passive Acoustic Monitoring Systems” (PAMS) (Gilmore et al. 2003). PAMS were 
deployed on July 9, 2004 for a period of 72 hrs to continuously record all sounds between 10 and 20,000 
Hz (Gilmore et al. 2003). Vessel noise interference with biological sounds was documented (Figures 2 & 
3) on a mid-continental shelf reef where fishery species are known to spawn: groupers (Goliath grouper, 
Epinephelus itajara; gag, Mycteroperca microlepis; scamp, M. phenax; red grouper, Epinephelus morio), 
black sea bass, Centropristis striatus, and various snappers (red, Lutjanus campechanus; mutton, L. 
analis; and lane, L. synagris). Each of these species uses acoustic signals during mating events (Mann 
2006; Mann et al. 1997, 2007, 2009, 2010; Locascio and Mann 2005, 2008, 2011). 
 

Figure 2. Spectral curves for diurnal ambient reef sounds produced on Horseshoe Reef (black curve) are compared 
to nocturnal biological sounds produced by an unidentified organism, labeled as “knockers”, whose acoustic pulses 



10 

center around 1,000 Hz, and fish calls (grouper/snapper) below 300 Hz (blue curve) with an approaching freighter 
30 min away (purple curve), and same vessel nearby (red curve). Note that the greatest anthropogenic 
interference is below 600 Hz. 
 

 
Figure 3. Horseshoe Reef sonogram depicting the same acoustic signals presented in Figure 2, revealing the 
greatest anthropogenic interference is from highly energetic sounds, engine and propeller noise below 600 Hz. 

VI. Mitigation  
There are several measures that could be implemented to mitigate anthropogenic acoustic impacts. 
New technologies are available to reduce vessel noise making them less acoustically intrusive. As 
technology allows, use of alternative propeller design and propulsion systems such as diesel-electric 
hybrid, electric motors, LNG pumps, and rotor sails that are quieter than internal combustion engines 
can be employed. Ship generators are also a substantial source of underwater noise. Insulated or sound 
proofed ship hulls may be necessary in major shipping industries to further reduce acoustic impacts. 
When in port, vessels should connect to on-shore power systems when possible.  
 
Marine spatial planning can be used to manage location and timing of when damaging sounds are 
generated. Acoustic transects can be used to isolate and map specific sites based on sound production 
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of fishery aggregations (Gilmore 1994, 1996, 2002; Luczkovich et al. 1999; Rountree et al. 2003) as well 
as the broader ambient soundscape (Chou et al. 2021). For example, critical spawning and aggregation 
sites can be designated as off limits to vessels, dredging, seismic, construction, and other sound 
generating activities at night which is when spawning chorus events typically occur. These sites can be 
remotely monitored with vessel tracking technologies, currently in use, allowing for violating vessels to 
be identified.  
 
Alternate seismic survey methods including higher sensitivity hydrophones, benthic stationary 
fibre-optic receivers, parabolic reflectors, and non-impulsive, very low frequency marine vibroseis are 
being studied (Chou et al. 2021). 
 
Construction that requires pilings or some form of foundation can benefit from installation technologies 
such as pulse prolongation, vibropiling, foundation drilling, gravity base foundation, suction bucket 
jacket, mono bucket foundation, and floating foundation (Koschinski and Lüdemann 2020). When 
possible, one or more sound dampening measures such as bubble curtains, isolation casings, hydro 
sound dampers, dewatered cofferdams, and double/mandrel piles should be used (Koschinski and 
Lüdemann 2020). Multiple sound exposure level metrics such as cumulative, peak, single-strike, and 
number of strikes should be considered when evaluating the potential effect of pile driving and other 
impulsive sounds and establishing allowable exposure criteria (Halvorsen et al. 2011). Furthermore, 
deterrence strategies such as soft-start and ramp-up are intended to scare away mobile species as noise 
levels are gradually increased to levels that are damaging (Andersson 2011 and Chou et al. 2021). 

VII. Data gaps and research needs 
There is little long-term data on the effect of chronic, cumulative, anthropogenic sounds from watercraft 
and wind turbine generators on the behavior of invertebrates and fish, particularly at spawning sites 
(Hawkins and Popper 2016, 2017) and monitoring programs should be developed. 
 
Effects from various types of anthropogenic noise including duration of and recovery from noise should 
be studied to determine if population level impacts exist which could affect fisheries catch rates (Carroll 
et al. 2017). 
 
Anthropogenic noise may act in combination with other non-noise stressors to affect a biological 
response or outcome (Carroll et al. 2017). Synergistic effect of noise and non-noise stressors should be 
examined. 
 
Sounds important to biological processes may be masked by anthropogenic sounds and the 
consequences of this disruption should be studied (Carroll et al. 2017 and Hawkins et al. 2015). 
 
Identify the noise exposure limits and acoustic impact thresholds for various life history stages of species 
(Chou et al. 2021). 
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Subtle and long-term effects on behavior or physiology could result from persistent exposure to certain 
noise levels leading to an impact on the survival of fish populations (Jasny 1999; Hastings and Popper 
2005). It is important to conduct integrated laboratory, behavioral, and physiological experiments under 
a variety of acoustic conditions, and coordinate these lab studies with field studies using the same 
organism. This is of critical importance as chronic sound has the potential to directly impact periodic 
spawning events at specific locations.  
 
Long-term acoustic listening stations should be deployed at spawning sites where significant human 
activities occur to determine if mitigation measures are needed. Identifying and mapping these critical 
areas to create management areas limiting human generated sound is also needed. 
 
More information on the impacts and importance of sound to fish larvae and eggs, as well as 
invertebrates at all life stages, is needed. 
 
Impact of noise exposure on fish habitat development, specifically reef formation and submerged 
aquatic vegetation beds, is poorly understood and in need of study. 
 
Mining the tens of thousands of hours of long duration historical recording data made by various aquatic 
bioacoustic investigators whose literature contributes to this review should be conducted to further 
identify and characterize potential human acoustic interference.  
 
Several important data collection needs to resolve include standardization of terminology and 
measurement of sound exposure (Carroll et al. 2017 and Hawkins et al. 2015), a methodology for 
measuring particle motion in the field (Hawkins et al. 2015, Popper and Hawkins 2018), determination of 
appropriate particle motion metrics, improvement of particle motion sensors and mounting systems, 
and standards for particle motion and sound pressure sensors (Popper and Hawkins 2018). 
 
Improved understanding of how sound pressure and particle motion effects may differ for and among 
species and life history stages (Popper and Hawkins 2018). 
 

VIII. Additional information 
The Discovery of Sound in the Sea website, https://dosits.org/ introduces users to the science and uses 
of Sound in the Sea. There are several major sections on the site such as The Science of Sound in the 
Sea, People and Sound in the Sea, and Animals and Sound in the Sea. This page focuses on resources for 
decision makers. 
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Introduction 
The Atlantic States Marine Fisheries Commission (Commission) serves as a deliberative body 
that coordinates the conservation and management of the Atlantic coastal states’ shared 
nearshore fishery resources for sustainable use. The Commission’s Habitat Committee 
functions to promote and support cooperative interstate conservation, restoration, and 
protection of vital habitats for Commission-managed species. One of these functions includes 
the development of recommendations for Habitat Areas of Particular Concern (HAPC) for each 
species, which the Commission renamed ‘Fish Habitats of Concern’ (FHOC) in October 2017 to 
distinguish the Commission term from the federal term defined by the Magnuson-Stevens 
Fishery Conservation and Management Act (Magnuson Act). FHOCs are a subset of fish habitat 
that are particularly ecologically important, sensitive, vulnerable to development threats, 
and/or rare. FHOCs are defined based on the same criteria as federally designated HAPCs, but 
since species managed only by the Commission do not fall under the Magnuson Act, their 
habitats are not afforded federal legal protection. Defining HAPC and FHOC for federally- and 
Commission-managed species, respectively, is intended to focus conservation efforts on specific 
habitats that are most ecologically important, vulnerable, and/or necessary to support each life 
stage of a species. 
 
Goals 
This report has two primary goals. 

1. To describe the regulatory and policy context for habitat descriptions in Commission 
Fishery Management Plans 

2. To draft text descriptions of FHOC for species managed only by the Commission. 
 
Commission Policy on Habitat Descriptions in Fishery Management Plans 
The Commission recognizes the importance of habitat conservation as a critical component of 
fisheries management and that thriving habitats produce abundant fish populations. While the 
Atlantic Coastal Fisheries Cooperative Management Act does not grant the Commission 
regulatory authority over habitat of commission-managed species, the Commission does 
require habitat descriptions be included as part of each Commission Fishery Management Plan 
(FMP) in recognition of the critical role habitat plays in fisheries production and ecosystem 
function.   

Guidance and process for the development of habitat sections to be included in FMPs outlined 
in the ASMFC’s Habitat Committee Guidance Document (2013).   

The basic elements of an FMP’s habitat section include: 
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1. Description of the Habitat; 
2. Identification and Distribution of Habitat and HAPC (since re-named FHOC); 
3. Present Condition of Habitats and HAPCs (since re-named FHOC); 
4. Recommendations and/or Requirements for Fish Habitat Conservation/Restoration; and 

Information Needs/Recommendations for Future Habitat Research. 

Commission-managed species are not subject to requirements imposed by the Magnuson Act 
which mandate designation of Essential Fish Habitat (EFH) and evaluation of federally permitted 
projects that may impact that habitat1. However, NOAA does have obligations to consult on a 
broader array of trust resources under the fish and wildlife coordination act, which include 
Commission-managed species. 
 
 
Guidelines for Identifying Fish Habitat of Concern, formerly known as HAPCs 
The Commission’s guidelines for identifying Fish Habitats of Concern (formerly HAPCs) in FMPs 
are stated in the box below. 
 
Taken from Appendix 3 to the Habitat Committee Guidance (2013, pp. 30-31). Note: all 
instances of “Habitat Area of Particular Concern” have been changed to “Fish Habitat of 
Concern” in the text below.  
 

1.4.1.2: Identification and Distribution of Fish Habitat of Concern 
 
The intent of this subsection is to identify habitat areas or habitat area of concern that are 
unequivocally essential to the species in all their life stages, since all used habitats have 
already been identified in Subsection 1.4.1.1.  
 
Fish Habitats of Concern, or FHOC, are areas within EFH that may be designated according to 
the Essential Fish Habitat Final Rule (2002) based on one or more of the following 
considerations: (i) the importance of the ecological function provided by the habitat, (ii) the 
extent to which the habitat is sensitive to human-induced environmental degradation, (iii) 
whether, and to what extent, development activities are, or will be, stressing the habitat type, 
or (iv) the rarity of the habitat type. Descriptions of EFH are not currently being included in 
FMPs prepared for species solely under Commission management. The definition of FHOC is 
therefore modified to be areas within the species’ habitat that satisfy one or more of the 
aforementioned criteria. When an FHOC is described for a species solely under the 
management of the Commission, the designation does not have any regulatory authority. 

                                                       
1Federal agencies proposing or authorizing projects within EFH areas are required to consult with the National Oceanic and 
Atmospheric Administration (NOAA) Fisheries to determine the impact of those projects on EFH. This EFH consultation is 
required only for federally managed species, not for species solely under the management authority of the Commissions. 
Regulatory guidelines for EFH consultations can be found at 50 C.F.R. §600.905 2015. 
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Please refer to the ASMFC HAPC document for a list of species under Commission 
management only and description of the corresponding HAPC (ASMFC 2013b)1.  
 
An FHOC is a subset of the “habitats” described in Subsection 1.4.1.1, and could include 
spawning habitat (e.g., particular river miles or river reaches for striped bass populations), 
nursery habitat for larvae, juveniles and subadults, and/or some amount of foraging habitat 
for mature adults. FHOC are geographic locations which are particularly critical to the survival 
of a species. Determination of the amount of habitats (spawning, nursery, subadult, adult 
residence, and adult migration routes) described in Subsection 1.4.1.1 that should be 
classified as FHOC may be difficult.  
 
Examples of FHOC include: any habitat necessary for the species during the developmental 
stage at which the production of the species is most directly affected; spawning sites for 
anadromous species; benthic areas where herring eggs are deposited; primary nursery areas; 
submerged aquatic vegetation in instances when species are determined to be “dependent” 
upon it; and inlets such as those located between the Atlantic Ocean and bays or sounds, 
which are the only areas available for providing ingress by larvae spawned offshore to their 
estuarine nursery areas.  
 
The extent of habitats or FHOC for a species may depend on factors such as habitat 
bottlenecks, the current stock size and/or the stock size for which a species Management 
Board and Technical Committee establishes targets, etc. Given the current state of knowledge 
with regard to the relationship between habitat and production of individual species, this 
information may not be available for many species.  
 
If known, the historical extent of FHOC should also be included in this subsection, in order to 
establish a basis for Subsection 1.4.1.3. Use of GIS is encouraged to depict the historical and 
current extent of HAPCs, and determine the amount of loss/degradation, which will assist in 
targeting areas for potential restoration. 
 
1.4.1.3: Present Condition of Habitats and Fish Habitat of Concern  
 
This subsection should include, to the extent the information is available, quantitative 
information on the amount of habitat and FHOC that are presently available for the species, 
and information on current habitat quality. Reasons for reduction in areal extent (either 
current or historical), should be addressed, for example, “dam construction has eliminated 
twenty percent of historical spawning habitat” (ASMFC, 2008), “forage habitat bottleneck has 
reduced the young-of-year populations by thirty percent”, or “fishing gear continues to 
disturb fifty percent of the forage habitat”, etc.  
 
Any habitats or FHOC that have diminished over time due to habitat bottlenecks should be 
incorporated to the extent information is available. Habitat bottlenecks can occur due to 

                                                       
1 This document was never completed and does not exist. 
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natural disasters, fishing disturbance, impacts of development, or other complex processes 
that can cause habitat shifts. This subsection can further address options to reverse or restore 
current known habitat bottlenecks. All current threats to the species’ habitat should be 
discussed in this subsection. If known, relative impacts from these activities should be 
identified and prioritized. For example, addressing hydrological alterations and their impacts 
are a high priority for anadromous species. These may include freshwater inflow/diversions; 
changes in flows due to hydropower, flood control, channel modifications, or surface/aquifer 
withdrawals; and saltwater flow or salinity changes due to reductions in freshwater inflows or 
deepening of navigation channels, which facilitate upstream salinity increases. Threats should 
also be assessed for their effect on the ability to recreationally and commercially harvest, 
consume, and market the species (e.g., heavy metals or chemical contamination which results 
in the posting of consumption advisories, or prohibition of commercial fisheries for a species, 
e.g. striped bass in the Hudson River, NY). 
 
This subsection will serve as a basis for the development of recommended or required actions 
to protect the species’ habitat, which will be outlined in Section 4.4. For example, the 
effectiveness of water quality standards should be reviewed in this subsection. If they are 
ineffective or inappropriate at protecting water quality at a level appropriate to assure the 
productivity and health of the species, then a recommendation should be included under the 
recommendations section (Section 4.4) for improvement of water quality standards. 

 
 
Purpose of this Report  
Although habitat information is required for each FMP, the amount of information compiled for 
each species varies, as does the extent of the underlying habitat-related science. Also, FMPs are 
written and amended as management needs arise, and the frequency of updates is not 
consistent between plans. Consequently, FHOC designations range from non-existent to specific 
and recent. This report was initiated to assess the quality of FHOC designations for Commission-
managed species and write or update text descriptions. 
 
The Habitat Committee drafted text descriptions of FHOC for each commission-managed 
species drawing on information from the current description of FHOC in the FMPs, species fact 
sheets, other ASMFC publications, and current literature. Descriptions were reviewed by the 
species technical committees for accuracy and approval.   
 
FHOC will not be designated for species managed jointly with the Councils, instead deferring to 
federal designations for EFH and HACPs. FHOCs will be designated on a case by case basis for 
species listed under the Endangered Species Act (ESA). 
 
As FMPs and other Commission documents are updated, ‘Habitat Areas of Particular Concern 
(HAPC)’ will be replaced with ‘Fish Habitats of Concern (FHOC)’ as appropriate. 
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Fish Habitats of Concern Designations 
 
American eel (Anguilla rostrata) 
Though no threats to the functional health of the Sargasso Sea have been reported, it is a Fish 
Habitat of Concern for spawning adults and eggs because this is where reproduction for the 
panmictic population occurs exclusively. Sargassum seaweed is currently harvested in U.S. 
waters by trawling primarily by one company. The harvesting of sargassum began in 1976, but 
has only occurred in the Sargasso Sea since 1987. Since 1976, approximately 44,800 dry pounds 
of sargassum have been harvested, 33,500 pounds of which were from the Sargasso Sea 
(SAFMC 1998). It is unknown whether this harvest is having direct or indirect influences on 
American eel mortality. Harvesting sargassum is being eliminated in the south Atlantic EEZ and 
State waters by January 1, 2001 through a management plan adopted by the South Atlantic 
Fisheries Management Council (SAFMC 1998). The extent of eel bycatch in these operations is 
unknown.  

The drift of leptocephalus larvae from the Sargasso Sea towards the Atlantic coast may be 
impacted by changes in the ocean currents. Such changes have been predicted to be due to 
climate change. The potential impact on the drift of larvae is unknown at this time, but the 
predicted weakening of the Gulf Stream may reduce larval transport to coastal and fresh 
waters. Currents, primary production, and potential influence of toxins transferred from the 
adults to the eggs influence the success of hatch, larval migration, feeding and growth. 

Glass eel survival (growth, distribution and abundance) on the continental shelf is probably 
impacted by a variety of activities. Channel dredging, shoreline filling, and overboard spoil 
disposal are common throughout the Atlantic coast, but currently the effects are unknown. 
Additionally, these activities may damage American eel benthic habitat. However, the 
significance of this impact also remains unknown. Changes in salinity in embayments, as a result 
of dredging projects, could alter American eel distribution. 

Elver and yellow eel abundance is probably also impacted by physical changes in the coastal 
and tributary habitats. Lost wetlands or access to wetlands and lost access to the upper reaches 
of tributaries have significantly decreased the availability of these important habitats with 
wetland loss estimated at 54% (Tiner 1984), and Atlantic coastal tributary access loss or 
restriction estimated at 84% (Busch et. al 1998). 

Habitat factors are probably impacting the abundance and survival of yellow and silver eel. The 
nearshore, embayments, and tributaries provide important feeding and growth habitat. The 
availability of these habitats influences the density of the fish and may influence the 
determination of sex. Therefore, since females may be more common in lower density settings 
(Krueger and Oliveira 1999, Roncrati et al. 1997, Holmgren and Mosegaard 1996, Vladykov 
1966, Liew 1982, Columbo and Rossi 1978), it is crucial that the quantity and quality of these 
habitats be protected and restored (including upstream access). The blockage or restriction to 
upstream migration caused by dams reduces or restricts the amount of available habitat to 
support eel distribution and growth, and therefore tributary headwaters are a particular Fish 
Habitat of Concern. Fish that succeeded to reach upstream areas may also face significant 
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stresses during downstream migration. If eel have to pass through turbines, mortality rates 
range from 10 to 60 percent (J. McCleave, U. of Maine, Person. Com.) and the amount of injury 
is not well documented. 

American lobster (Homarus americanus) 
Scientists, managers, and fishermen are concerned about the habitat conditions for American 
lobster in southern New England waters where rising water temperature has combined with 
degraded water quality to create conditions lethal to lobsters. Such a combination of 
environmental factors and events resulted in a massive die-off of lobster in western Long Island 
Sound in late 1999, with lesser events in later years. Continued elevated water temperatures, 
coupled with routine fall hypoxia and other water quality stress factors, have caused 
recruitment failure for the stock of lobster south of Cape Cod. North of Cape Cod, the same rise 
in water temperature has resulted in historically high reproduction and survival of young 
lobsters. 

Other Fish Habitats of Concern include gravel, cobble, boulder, and embedded rock for young-
of-year, juvenile, and adult life stages. Areas where these habitats are limited and in close 
proximity to offshore shoals are susceptible to various types of anthropogenic impact. 

Atlantic croaker (Micropogonias undulates) 
Estuaries serve as important nursery and spawning areas for Atlantic croaker. For juveniles in 
particular, this includes mud substrate with high detrital content. Many estuarine environments 
may have insufficient water quality to support Atlantic croaker habitat, due to land-based 
activities such as coastal development, pollution, chemical and nutrient discharges, and runoff. 
These activities can result in a reduction of dissolved oxygen and can create hypoxic or anoxic 
conditions.  

Atlantic menhaden (Brevoortia tyrannus) 
Estuarine-subtidal and riverine-tidal systems are Fish Habitat of Concern for larval and early 
juvenile life stages of Atlantic menhaden. Atlantic menhaden production is heavily dependent 
on estuarine-subtidal and riverine-tidal systems (constrained to the upstream limit of the tidal 
zone) and the water quality of those systems are threatened by climate change, toxicants, 
nutrient pollution, and altered freshwater flows. A further threat to estuarine water quality is 
lower dissolved oxygen associated with increasing average annual temperatures due to climate 
change.  

Atlantic striped bass (Morone saxatilis) 
Striped bass are highly concentrated and most vulnerable in their riverine spawning areas and 
offshore wintering grounds. Therefore these two habitats are Fish Habitats of Concern for 
striped bass.  

Striped bass spawn in freshwater or nearly freshwater of Atlantic Coast rivers and estuaries. Such sites 
provide the critical ecological function of reproduction; are sensitive to anthropogenic impacts such as 
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dam emplacement, nutrient and sediment loading, and pollution; are susceptible to navigational 
dredging and other coastal development activities; and are relatively small in extent and extremely rare 
in comparison to the areal extent of other migratory striped bass habitats. They spawn above the tide in 
mid-February in Florida but in the St. Lawrence River they spawn in June or July. The bass spawn in 
turbid areas as far upstream as 320 km from the tidal zone (Hill, 1989). The tributaries of the 
Chesapeake Bay are the primary spawning areas for striped bass, but other major areas include the 
Hudson River, Delaware Bay and the Roanoke River. Spawning is triggered by increased water 
temperature (Shepherd, 2000). Spawning occurs between 10 and 23 degrees Celsius, but optimal 
temperature for spawning is between 17 and 19 degrees Celsius. No spawning occurs below 13 degrees 
Celsius or above 22 degrees Celsius (Bain, 1982). Spawning is characterized by brief excursions to the 
surface by females surrounded by males, accompanied by much splashing. Females release eggs in the 
water. This is where fertilization occurs (Raney, 1952).  
 
A temperature range of 17-19 degrees Celsius is important for egg survival as well as for maintaining 
appropriate dissolved oxygen levels (Bain, 1982). Minimum water velocities of 30 cm/sec are needed to 
keep the eggs suspended, and fluctuations in the water velocity causes changes in the size of the oil 
globule surrounding the eggs (Albrecht, 1964). Without the buoyancy, the eggs sink to the bottom, 
where the sediment may smother them. It is possible for the eggs to hatch if the sediment is course and 
not sticky or muddy, but that survival is limited (Bayless, 1968). Eggs hatch from about 30 hours at 22 
degrees Celsius to about 80 hours at 11 degrees Celsius (Hill, 1989).  
 
Wintering grounds occur in the nearshore Atlantic Ocean from the Gulf of Maine south to at least 
Topsail Island, North Carolina. These habitats provide the critical ecological function of foraging and 
cover for adults most of the year; are sensitive to human-induced environmental degradation due to 
fishing activities, commercial navigation, offshore oil and gas exploration, and construction of offshore 
liquid natural gas (LNG) facilities; they are all coastal and subject to the aforementioned coastal 
development activities; and they are restricted to a relatively narrow band of nearshore ocean, although 
not as rare as spawning habitats and inlets. 
 
Atlantic sturgeon (Acipenser oxyrhincus) 
The Fish Habitats of Concern for Atlantic sturgeon are NOAA Fisheries’ Critical Habitat 
designations. The designations can be found here: 
https://www.fisheries.noaa.gov/action/critical-habitat-designation-atlantic-sturgeon.  

Black drum (Pogonia cromis) 
Black drum are habitat generalists, so no Fish Habitats of Concern are designated. At various life 
stages they can be found in the following habitats: tidal freshwater, estuarine emergent 
vegetated wetlands (flooded salt marshes, brackish marsh, and tidal creeks), estuarine 
scrub/shrub (mangrove fringe), submerged rooted vascular plants (seagrasses), oyster reefs and 
shell banks, unconsolidated bottom (soft sediments), ocean high salinity surf zones, and 
artificial reefs. The estuarine system as a whole serves as the species’ primary nursery areas. 
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Cobia (Rachycentron canadum) 
While cobia are habitat generalists, good water quality in high salinity sounds in South Carolina 
and Virginia where spawning aggregations occur and eggs and larvae develop is necessary. Fish 
Habitats of Concern should be designated for Port Royal Sound, St. Helena Sound, Beaufort, 
Barden’s, Hatteras, and the mouth of the Chesapeake Bay, especially for the months of April 
through June, when extensive eggs and larvae have been documents (Lefebvre and Denson 
2012). The timing of seasonal migrations and spawning aggregations appear to be driven by 
water temperature, therefore interannual variation in the water temperature and climate 
change could affect the timing of spawning and recruitment from year-to-year in the future. 

Along the Atlantic coast, there are three genetically distinct groups of cobia: 1) NC/SC offshore, 
2) inshore SC (Port Royal Sound and St. Helena Sound), a 3) inshore VA (Darden et al. 2014, 
Perkinson et al. 2019). 

Horseshoe crab (Limulus polyphemus) 
The distribution of high quality spawning beaches, which are exposed to minimal human 
disturbance, presents a potential bottleneck to reproductive success for this species. Beach 
areas that provide spawning habitat are Fish Habitats of Concern for adult horseshoe crabs. 
Composition of suitable spawning beaches are sand having grain sizes that range from 0.4-1.1 
mm and are well drained having a moisture content of 1.5-7.5% at 9.4 cm depth. Sand must 
have an oxygen content >4 mg/L. Sand temperature >13.5 °C and water temperature ≥ 15 °C 
are required. Minimum depth of sand is 1 cm, but a sand depth > 20 cm is optimal. Beach slope 
is shallow at 4.5-9.5%. Presence of sulfate (from marsh peat) and anaerobic conditions will 
deter use of beach Delaware Division of Fish and Wildlife's 16-foot bottom trawl survey data 
indicated that over 99% of juvenile horseshoe crabs (<160 mm prosomal width) were taken at 
salinities >5 (Michels, 1997). Larger juveniles and adults use deep water habitats to forage for 
food, but these are not considered Fish Habitats of Concern. Of these habitats, the beaches are 
the most critical (Shuster 1994). Optimal spawning beaches may be a limiting reproductive 
factor for the horseshoe crab population.  
 
The densest concentrations of horseshoe crabs in New Jersey occur on small sandy beaches 
surrounded by salt marshes or bulkheaded areas (Loveland et al. 1996). The spawning beaches 
within Delaware Bay are critical habitat because they support the highest density of spawning 
horseshoe crabs along the US Atlantic Coast. Good spawning habitat is widely distributed 
throughout Maryland's Chesapeake and coastal bays, including tributaries. Horseshoe crabs are 
restricted to areas that exceed salinities of 7 (Maryland Department of Natural Resources 
1998). Prime spawning beaches within the Delaware Bay consist of sand beaches between 
Maurice River and the Cape May Canal in New Jersey and between Bowers Beach and Lewes in 
Delaware (Shuster 1994). In South Carolina and Georgia, horseshoe crabs spawn in substantial 
numbers on a variety of substrates including sandy beaches, salt marshes, and coarse-grained 
oyster shell. These are known stopover locations for red knot. While viability of eggs deposited 
in salt marshes are slightly reduced compared the sandy beaches, horseshoe crabs apparently 
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use these habitats for spawning frequently in SC (Pers. Comm. SCDNR; Kendrick et al. In 
Review). 
 
Jonah crab (Cancer borealis) 
More research is needed before designating Fish Habitats of Concern for Jonah crab. 

Northern shrimp (Pandalus borealis) 
Deep, muddy basins in nearshore waters (out to 10 miles) in the southern region of the Gulf of 
Maine act as cold water refuges for adult shrimp during periods when most water in the Gulf 
reaches lethal temperatures, and is therefore a Fish Habitat of Concern. Temperature serves as 
a habitat bottleneck for this species. Nearshore water provides habitat for larval and juveniles 
stages of northern shrimp.  
 
Red drum (Sciaenops ocellatus) 
Red drum Fish Habitats of Concern include inlets, channels, sounds, and outer bars due to their 
importance for red drum spawning activity.  

A species’ primary nursery areas are indisputably essential to its continuing existence. Primary 
nursery areas for red drum can be found throughout estuaries, usually in shallow waters of 
varying salinities that offer certain degree of protection. Such areas include coastal marshes, 
shallow tidal creeks, bays, tidal flats of varying substrate, tidal impoundments, and seagrass 
beds. Since red drum larvae and juveniles are ubiquitous in such environments, it is impossible 
to designate specific areas as deserving more protection than others. Moreover, these areas 
are not only primary nursery areas for red drum, but they fulfill the same role for numerous 
other resident and estuarine-dependent species of fish and invertebrates, especially other 
sciaenids. Similarly, subadult red drum habitat extends over a broad geographic range and 
adheres to the criteria that define HAPCs. Subadult red drum are found throughout tidal creeks 
and channels of southeastern estuaries, in backwater areas behind barrier islands and in the 
front beaches during certain times of the year. Therefore, the estuarine system as a whole, 
from the lower salinity reaches of rivers to the mouth of inlets, is vital to the continuing 
existence of this species.  
 
While there is currently no supporting evidence to suggest a particular habitat type limits red 
drum populations, seagrass beds as especially important for newly settled individuals, and 
oyster reefs are especially important to red drum during the juvenile and sub-adult life stages. 
In fact, data from Georgia’s Marine Sportfish Health Survey indicate over 80% of juvenile red 
drum are associated with shell habitats. Changes in water flow and conditions due to 
watershed activities may also limit recruitment of larvae at a local scale. 
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River herring and shad: alewife (Alosa aestivalis),blueback herring (Alosa pseudoharengus), 
American shad (Alosa sapidissima), and hickory shad (Alosa mediocris) 
 
Fish Habitat of Concern 
NOTE: Due to the dearth of information on Fish Habitat of Concern for alosine species, this 
information is applicable to American shad, hickory shad, alewife, and blueback herring 
combined. Information about one alosine species may be applicable to other alosine species and 
is offered for comparison purposes only. Certainly, more information should be obtained at 
individual FHOC for each of the four alosine species. 
 
Metapopulation structure, meaning groups of the same species that are spatially separate, but 
may interact at some level, is evident in river herring.  Metapopulation structure is important 
because individuals may be locally adapted.  Adults frequently return to their natal rivers for 
spawning but some limited straying occurs between rivers (Jones, 2006; ASMFC, 2009a).  
Critical life history stages for American shad, hickory shad, alewife, and blueback herring, are 
the egg, prolarva (yolk-sac or pre-feeding larva), post-larva (feeding larva), and early juvenile 
(through the first month after transformation) (Klauda et al. 1991a,b).  Spawning grounds and 
nursery habitat where these critical life stages grow and mature broadly includes freshwater 
ponds, rivers, tributaries, and inlets. The substrate preferred for spawning varies greatly and 
can include gravel, detritus, and submerged aquatic vegetation. Blueback herring prefer swifter 
moving waters than alewives do (ASMFC, 2009a). Nursery areas include freshwater and semi-
brackish waters. Access to these spawning and nursery habitats may be blocked or impeded by 
dams or other barriers.  Juvenile alosines, which leave the coastal bays and estuaries prior to 
reaching adulthood, also use the nearshore Atlantic Ocean as a nursery area (ASMFC 1999). 

See Greene et al. 2009 for tables that detail environmental, temporal, and spatial values/factors 
affecting the distribution of alewife, blueback herring, American shad, and hickory shad.  

Habitat quantity  
Thousands of kilometers of historic anadromous alosine habitat have been lost due to 
development of dams and other obstructions to migration. In the 19th century, organic 
pollution from factories created zones of hypoxia or anoxia near large cities (Burdick 1954; 
Talbot 1954; Chittenden 1969). Gradual loss of spawning and nursery habitat quantity and 
quality, and overharvesting are thought to be the major causative factors for population 
declines of American shad, hickory shad, alewife, and blueback herring (ASMFC 1999).  

It is likely that American shad spawned in all rivers and tributaries throughout the species’ 
range on the Atlantic coast prior to dam construction in this country (Colette and Klein-
MacPhee 2002). While precise estimates are not possible, it is speculated that at least 130 
rivers supported historical runs; now there are fewer than 70 systems that support spawning. 
Individual spawning runs may have numbered in the hundreds of thousands. It is estimated that 
runs have been reduced to less than 10% of historic sizes.  The 2020 American Shad Benchmark 
Stock Assessment Summary reported that the percentage of historic riverine habitat that is 

http://www.asmfc.org/files/Habitat/HMS9_Diadromous_Habitat_2009.pdf
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currently unobstructed varies from 4-100% in 23 river systems from Maine to Florida, with 12 
systems at 75% or less unobstructed and 7 river systems at 50% or less unobstructed (see table 
in ASMFC 2020a).  One recent estimate of river kilometers unavailable for spawning is 4.36 x 
103 compared to the original extent of the runs. This is an increase in available habitat as 
compared with estimates from earlier years, with losses estimated at 5.28 x 103 in 1898 and 
4.49 x 103 in 1960. The increase in available habitat has largely been due to restoration efforts 
and enforcement of pollutant abatement laws (Limburg et al. 2003).  

Some states have general characterizations of the degree of habitat loss, but few studies have 
actually quantified impacts in terms of the area of habitat lost or degraded (ASMFC 1999). It has 
been noted that dams built during the 1800’s and early to mid-1900’s on several major 
tributaries to the Chesapeake Bay have substantially reduced the amount of spawning habitat 
available to American shad (Atran et al. 1983; CEC 1988), and likely contributed to long-term 
stock declines (Mansueti and Kolb 1953). North Carolina characterized river herring habitat loss 
as “considerable” from wetland drainage, stream channelization, stream blockage, and oxygen-
consuming stream effluent (NCDENR 2000).  Sixteen state and cooperative river basin habitat 
plans that provide greater local detail on American shad habitat and are available at 
http://www.asmfc.org/species/shad‐river‐herring. 

Some attempts have been made to quantify existing or historical areas of anadromous alosine 
habitat, including spawning reaches. Most recently, the American shad benchmark assessed 
and compared the amount of currently available habitat for American shad in Atlantic Coast 
rivers to historic habitat availability (ASMFC 2020b). See section 2.7.2 for a description of this 
analysis. Results are presented for individual systems in each system stock section (Section 3), 
and overall coastwide results are provided in section 4.4.2.  Previously, Maine estimated that 
the American shad habitat area in the Androscoggin River is 10,217,391 yd2. In the Kennebec 
River, Maine, from Augusta to the lower dam in Madison, including the Sebasticook and Sandy 
rivers, and Seven Mile and Wesserunsett streams, there is an estimated 31,510,241 yd2 of 
American shad habitat and 24,606 surface acres of river herring habitat. Lary (1999) identified 
an estimated 90,868 units (at 100 yd2 each) of suitable habitat for American shad and 296,858 
units (at 100 yd2 each) for alewife between Jetty and the Hiram Dam along the Saco River, 
Maine. Above the Boshers Dam on the James River, Virginia, habitat availability was estimated 
in terms of the number of spawning fish that the main-stem area could support annually, which 
was estimated at 1,000,000 shad and 10,000,000 river herring (Weaver et al. 2003). 

Although many stock sizes of alosine species are decreasing or remain at historically low levels, 
some stock sizes are increasing. It has not been determined if adequate spawning, nursery, and 
adult habitat presently exist to sustain stocks at recovered levels (ASMFC 1999).  

Habitat quality  
Concern that the decline in anadromous alosine populations is related to habitat degradation 
has been alluded to in past evaluations of these stocks (Mansueti and Kolb 1953; Walburg and 
Nichols 1967). This degradation of alosine habitat is largely the result of human activities. 
However, it has not been possible to rigorously quantify the magnitude of degradation or its 
contribution to impacting populations (ASMFC 1999).  

http://www.asmfc.org/uploads/file/5f47c8dbAmShadAssessmentOverview_Aug2020.pdf
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Of the habitats used by American shad, spawning habitat has been most affected. Loss due to 
water quality degradation is evident in the northeast Atlantic coast estuaries. In most alosine 
spawning and nursery areas, water quality problems have been gradual and poorly defined; it 
has not been possible to link those declines to changes in alosine stock size. In cases where 
there have been drastic declines in alosine stocks, such as in the Chesapeake Bay in Maryland, 
water quality problems have been implicated, but not conclusively demonstrated to have been 
the single or major causative factor (ASMFC 1999).  

Toxic materials, such as heavy metals and various organic chemicals (i.e., insecticides, solvents, 
herbicides), occur in anadromous alosine spawning and nursery areas and are believed to be 
potentially harmful to aquatic life, but have been poorly monitored. Similarly, pollution in 
nearly all of the estuarine waters along the East Coast has certainly increased over the past 30 
years, due to industrial, residential, and agricultural development in the watersheds (ASMFC 
1999). 
 
Recommend adding maps that show spawning habitat (pull from Diadromous fish doc).   
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Spot (Leiostomus xanthurus) 

http://www.asmfc.org/uploads/file/5f999ba1AmShadBenchmarkStockAssessment_PeerReviewReport_2020_web.pdf
http://www.asmfc.org/uploads/file/5f999ba1AmShadBenchmarkStockAssessment_PeerReviewReport_2020_web.pdf
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For larval spot, Fish Habitats of Concern include mesohaline/polyhaline SAV and 
brackish/saltwater marsh. Fish Habitats of Concern for juvenile and adult spot include mud and 
detrital substrates that have epifaunal and infauna. 

Spot are strongly associated with the bottom as juveniles and adults and are seasonally 
dependent on estuaries. From Delaware to Florida, primary nursery habitat includes low salinity 
bays and tidal marsh creeks with mud and detrital bottoms. In the Chesapeake Bay and North 
Carolina, juveniles can also be found in eelgrass.  

Spotted seatrout (Cynoscion nebulosus) 
Submerged aquatic vegetation (SAV) and salt marsh, especially where SAV is not available, are 
Fish Habitats of Concern for spotted seatrout. Seagrass beds provide important habitat for both 
juvenile and adult spotted seatrout, but are in decline along much of the Atlantic coast. 
Spawning takes place on or near seagrass beds, as well as sandy banks, natural sand, shell reefs, 
near the mouths of inlets, and off the beach (Daniel 1988; Brown-Peterson et al. 2002). 
Environmental conditions in spawning areas may affect growth and mortality of egg and larvae, 
as sudden salinity reductions cause spotted seatrout eggs to sink, thus reducing dispersal and 
survival (Holt and Holt 2003).  

Tautog (Tautoga onitis) 
All structured habitats that are used by juvenile and adult tautog (e.g. outcrops, shells, reef, 
hard and soft corals, and sea whips), as well as inlets adjacent to estuaries serving as important 
refuge and spawning sites are Fish Habitats of Concern. SAV is a Fish Habitat of Concern for 
larvae and young-of-year.  

Weakfish (Cynoscion regalis) 
Important habitats for weakfish include nursery and spawning areas distributed along the coast 
from Maine through Florida. The principal spawning area is from North Carolina to Montauk, 
NY (Hogarth et al. 1995b), although extensive spawning and presence of juveniles has been 
observed in the bays and inlets of Georgia and South Carolina (pers. Comm, D. Whitaker, 
SCDNR). 

Spawning sites include coastal bays, sounds, and the nearshore Atlantic Ocean. Nursery areas 
include the upper and lower portions of the rivers and their associated bays and estuaries. 
While disturbance to a nursery area will affect the overall coastal weakfish population it would 
be expected to have the greatest impact on the specific sub-population and the local fisheries 
that depend on it.  
Egg and larval habitat include the nearshore waters as well as the bays, estuaries, and sounds 
to which they are transported by currents or in which they hatch.  

Juvenile weakfish inhabit the deeper waters of bays, estuaries, and sounds, including their 
tributary rivers. They also use the nearshore Atlantic Ocean as a nursery area. In North Carolina 
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and other states, they are associated with sand or sand/seagrass bottom. In Chesapeake and 
Delaware Bays, they migrate to the Atlantic Ocean by December.  

Adult weakfish reside in both estuarine and nearshore Atlantic Ocean habitats. Warming of 
coastal waters in the spring keys migration inshore and northward from the wintering grounds 
to bays, estuaries and sounds. Larger fish move inshore first and tend to congregate in the 
northern part of the range. Catch data from commercial fisheries in Chesapeake and Delaware 
Bays and Pamlico Sound indicate that the larger fish are followed by smaller weakfish in 
summer. Shortly after their initial spring appearance, weakfish return to the larger bays and 
nearshore ocean to spawn. In northern areas, a greater portion of the adults spends the 
summer in the ocean rather than estuaries. Weakfish form aggregations and move offshore as 
temperatures decline in the fall. They move generally offshore and southward. The Continental 
Shelf from Chesapeake Bay to Cape Lookout, North Carolina, appears to be the major wintering 
ground. Winter trawl data indicate that most weakfish were caught between Ocracoke Inlet 
and Bodie Island, NC, at depths of 18 -–55 meters (59 – 180 feet). Some weakfish may remain in 
inshore waters from North Carolina southward. 

 
The quality of weakfish habitats has been compromised largely by impacts resulting from 
human activities. It is generally assumed that weakfish habitats have undergone some degree 
of loss and degradation; however, few studies that quantify impacts in terms of the area of 
habitat lost or degraded.  

Loss due to water quality degradation is evident in the northeast Atlantic coast estuaries. The 
New York Bight is one example of an area that has regularly received deposits of contaminated 
dredged material, sewage sludge and industrial wastes. These deposits have contributed to 
oxygen depletion and the creation of large masses of anoxic waters during the summer months.  

Some losses have likely occurred due to the intense coastal development that has occurred 
during the last several decades, although no quantification has been done. Losses have likely 
resulted from dredging and filling activities that have eliminated shallow water nursery habitat. 
Further functional losses have likely occurred due to water quality degradation resulting from 
point and non-point source discharges. Intensive conversion of coastal wetlands to agricultural 
use also is likely to have contributed to functional loss of weakfish nursery area habitat.  

Other functional loss of riverine and estuarine areas may have resulted from changes in water 
discharge patterns resulting from withdrawals or flow regulation. Estuarine nursery areas for 
weakfish, as well as adult spawning and pre-spawning staging areas, may be affected by 
prolonged extreme conditions resulting from inland water management practices.  

Power plant cooling facilities continue to impact weakfish populations. The EPA in recent rules 
regarding these facilities estimates that the number of total weakfish age 1 equivalents lost as a 
result of entrainment at all transition zone cooling water intake structures in the Delaware Bay 
is over 2.2 million individuals. Other threats stem from the continued alteration of freshwater 
flows and discharge patterns to spawning, nursery, and adult habitats in rivers and estuaries. 
Additional threats in the form of increased mortality resulting from placement of additional 
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municipal water intakes in spawning and nursery areas will occur, although the impacts may be 
mitigated to some degree with proper screening. 
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